Microbial tolerance engineering for boosting lactic acid production from lignocellulose

Biotechnology for Biofuels and Bioproducts - Tập 16 - Trang 1-10 - 2023
Wenwen Shan1,2, Yongli Yan1,2, Yongda Li3, Wei Hu1,2, Jihong Chen1,2
1Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
2University of Chinese Academy of Sciences, Beijing, People’s Republic of China
3College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, People’s Republic of China

Tóm tắt

Lignocellulosic biomass is an attractive non-food feedstock for lactic acid production via microbial conversion due to its abundance and low-price, which can alleviate the conflict with food supplies. However, a variety of inhibitors derived from the biomass pretreatment processes repress microbial growth, decrease feedstock conversion efficiency and increase lactic acid production costs. Microbial tolerance engineering strategies accelerate the conversion of carbohydrates by improving microbial tolerance to toxic inhibitors using pretreated lignocellulose hydrolysate as a feedstock. This review presents the recent significant progress in microbial tolerance engineering to develop robust microbial cell factories with inhibitor tolerance and their application for cellulosic lactic acid production. Moreover, microbial tolerance engineering crosslinking other efficient breeding tools and novel approaches are also deeply discussed, aiming to providing a practical guide for economically viable production of cellulosic lactic acid.

Tài liệu tham khảo

Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv. 2013;31(6):877–902. Djukić-Vuković A, Mladenović D, Ivanović J, Pejin J, Mojović L. Towards sustainability of lactic acid and poly-lactic acid polymers production. Renew Sust Energ Rev. 2019;108:238–52. Qiu ZY, Han XS, He JL, Jiang YA, Wang GL, Wang ZJ, et al. One-pot D-lactic acid production using undetoxified acid-pretreated corncob slurry by an adapted Pediococcus acidilactici. Bioresour Technol. 2022;363: 127993. Wang L, Xue Z, Zhao B, Yu B, Xu P, Ma Y. Jerusalem artichoke powder: a useful material in producing high-optical-purity l-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain. Bioresour Technol. 2013;130:174–80. Peng LL, Wang LM, Che CC, Yang G, Yu B, Ma YH. Bacillus sp strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural. Bioresour Technol. 2013;149:169–76. Abdel-Rahman MA, Sonomoto K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol. 2016;236:176–92. Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotech. 2016;38:190–7. Wang Y, Chang JQ, Cai D, Wang Z, Qin PY, Tan TW. Repeated-batch fermentation of L-lactic acid from acid hydrolysate of sweet sorghum juice using mixed neutralizing agent under unsterilized conditions. J Chem Technol Biot. 2017;92(7):1848–54. Qiu ZY, Gao QQ, Bao J. Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic L-lactic acid fermentation. Bioresour Technol. 2018;249:9–15. Kong X, Zhang B, Hua Y, Zhu YL, Li WJ, Wang DM, et al. Efficient L-lactic acid production from corncob residue using metabolically engineered thermo-tolerant yeast. Bioresour Technol. 2019;273:220–30. Huang C, Jiang X, Shen X, Hu J, Tang W, Wu X, et al. Lignin-enzyme interaction: a roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew Sust Energ Rev. 2022;154:111822. Wu B, Qin H, Yang YW, Duan GW, Yang SH, Xin FX, et al. Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis. Biotechnol Biofuels. 2019;12:10. Yan XY, Wang X, Yang YF, Wang Z, Zhang HY, Li Y, et al. Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production. Bioresour Technol. 2022;349:126878. Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol. 2020;300:122724. Yang YF, Hu MM, Tang Y, Geng BN, Qiu MY, He QN, et al. Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis. Bioresour Bioprocess. 2018;5:6. Tan JY, Li Y, Tan X, Wu HG, Li H, Yang S. Advances in pretreatment of straw biomass for sugar production. Front Chem. 2021;9: 696030. Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. 2017;4(1):7. Zhou M, Tian XJ. Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose. Int J Biol Macromol. 2022;202:256–68. Vidal BC, Dien BS, Ting KC, Singh V. Influence of feedstock particle size on lignocellulose conversion—a review. Appl Biochem Biotech. 2011;164(8):1405–21. Hassan SS, Williams GA, Jaiswal AK. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol. 2018;262:310–8. Shirkavand E, Baroutian S, Gapes DJ, Young BR. Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment—a review. Renew Sust Energ Rev. 2016;54:217–34. Moodley P, Sewsynker-Sukai Y, Kana EBG. Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: potential for bioethanol production. Bioresour Technol. 2020;310:123372. Wu D, Wei ZM, Mohamed TA, Zheng GR, Qu FT, Wang F, et al. Lignocellulose biomass bioconversion during composting: mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere. 2022;286:131635. Woiciechowski AL, Neto CJD, Vandenberghe LPD, Neto DPD, Sydney ACN, Letti LA, et al. Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance—conventional processing and recent advances. Bioresour Technol. 2020;304:122848. Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol Biofuels. 2019;12(1):294. Karnaouri A, Asimakopoulou G, Kalogiannis KG, Lappas AA, Topakas E. Efficient production of nutraceuticals and lactic acid from lignocellulosic biomass by combining organosolv fractionation with enzymatic/ fermentative routes. Bioresour Technol. 2021;341:125846. Wu D, Wei ZM, Zhao Y, Zhao XY, Mohamed TA, Zhu LJ, et al. Improved lignocellulose degradation efficiency based on Fenton pretreatment during rice straw composting. Bioresour Technol. 2019;294:122132. Esquivel-Hernández DA, García-Pérez JS, Lopéz-Pacheco IY, Iqbal HMN, Parra-Saldívar R. Resource recovery of lignocellulosic biomass waste into lactic acid—trends to sustain cleaner production. J Environ Manage. 2022;301:113925. Agudelo RA, García-Aparicio MP, Görgens JF. Steam explosion pretreatment of triticale (X Triticosecale Wittmack) straw for sugar production. New Biotechnol. 2016;33(1):153–63. Smichi N, Messaoudi Y, Allaf K, Gargouri M. Steam explosion (SE) and instant controlled pressure drop (DIC) as thermo-hydro-mechanical pretreatment methods for bioethanol production. Bioproc Biosyst Eng. 2020;43(6):945–57. Karp SG, Woiciechowski AL, Soccol VT, Soccol CR. Pretreatment strategies for delignification of sugarcane bagasse: a review. Braz Arch Biol Techn. 2013;56(4):679–89. Peng H, Zhao W, Liu J, Liu P, Yu H, Deng J, et al. Distinct cellulose nanofibrils generated for improved Pickering emulsions and lignocellulose-degradation enzyme secretion coupled with high bioethanol production in natural rice mutants. Green Chem. 2022;24(7):2975–87. Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol. 2011;156(4):286–301. Zhang L, Li X, Yong Q, Yang ST, Ouyang J, Yu SY. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae. Bioresour Technol. 2016;203:173–80. Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biot. 2007;82(4):340–9. Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66(1):10–26. Wang SZ, Sun XX, Yuan QP. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: a review. Bioresour Technol. 2018;258:302–9. Jayakody LN, Chinmoy B, Turner TL. Trends in valorization of highly-toxic lignocellulosic biomass derived-compounds via engineered microbes. Bioresour Technol. 2022. https://doi.org/10.1016/j.biortech.2021.126614. Wang SZ, He ZJ, Yuan QP. Xylose enhances furfural tolerance in Candida tropicalis by improving NADH recycle. Chem Eng Sci. 2017;158:37–40. Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3:2. Guaragnella N, Antonacci L, Passarella S, Marra E, Giannattasio S. Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways. Biochem Soc Trans. 2011;39:1538–43. Keweloh H, Weyrauch G, Rehm HJ. Phenol-induced membrane-changes in free and immobilized Escherichia coli. Appl Microbiol Biot. 1990;33(1):66–71. Wang XW, Qin JY, Zhu QQ, Zhu BB, Zhang XH, Yao QS. Transcriptome analysis of Bacillus coagulans P38, an efficient producer of L-lactic acid from cellulosic hydrolysate, in response to 2-furfural stress. Ann Microbiol. 2016;66(2):889–94. Wang X, Miller EN, Yomano LP, Zhang X, Shanmugam KT, Ingram LO. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microb. 2011;77(15):5132–40. Zhao K, Qiao QG, Chu DQ, Gu HQ, Dao TH, Zhang J, et al. Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresour Technol. 2013;135:481–9. Sun HM, Liu L, Liu W, Liu Q, Zheng ZJ, Fan YM, et al. Removal of inhibitory furan aldehydes in lignocellulosic hydrolysates via chitosan-chitin nanofiber hybrid hydrogel beads. Bioresour Technol. 2022;346: 126563. Zhang J, Zhu ZN, Wang XF, Wang N, Wang W, Bao J. Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels. 2010;3:26. Pan LW, He MX, Wu B, Wang YW, Hu GQ, Ma KD. Simultaneous concentration and detoxification of lignocellulosic hydrolysates by novel membrane filtration system for bioethanol production. J Clean Prod. 2019;227:1185–94. van der Pol E, Springer J, Vriesendorp B, Weusthuis R, Eggink G. Precultivation of Bacillus coagulans DSM2314 in the presence of furfural decreases inhibitory effects of lignocellulosic by-products during L(+)-lactic acid fermentation. Appl Microbiol Biot. 2016;100(24):10307–19. Aulitto M, Fusco S, Nickel DB, Bartolucci S, Contursi P, Franzen CJ. Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharification and fermentation. Biotechnol Biofuels. 2019;12:45. Zhang YM, Chen XR, Luo JQ, Qi BK, Wan YH. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour Technol. 2014;158:396–9. He NL, Jia J, Qiu ZY, Fang C, Liden G, Liu XC, et al. Cyclic L-lactide synthesis from lignocellulose biomass by biorefining with complete inhibitor removal and highly simultaneous sugars assimilation. Biotechnol Bioeng. 2022;119(7):1903–15. Wang WT, Wu B, Qin H, Liu PT, Qin Y, Duan GW, et al. Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. Biotechnol Biofuels. 2019;12(1):288. Ling H, Teo W, Chen B, Leong SS, Chang MW. Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol. 2014;29:99–106. Cheng C, Almario MP, Kao KC. Genome shuffling to generate recombinant yeasts for tolerance to inhibitors present in lignocellulosic hydrolysates. Biotechnol Lett. 2015;37(11):2193–200. Tan FR, Dai LC, Wu B, Qin H, Shui ZX, Wang JL, et al. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl Microbiol Biot. 2015;99(12):5363–71. Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biot. 2014;98(12):5387–96. Hu W, Li W, Chen J. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP. Lett Appl Microbiol. 2017;65(4):274–80. Jiang T, Qiao H, Zheng ZJ, Chu QL, Li X, Yong Q, et al. Lactic acid production from pretreated hydrolysates of corn stover by a newly developed Bacillus coagulans strain. PLoS ONE. 2016;11(2):e0149101. Ma KD, He MX, You HY, Pan LW, Hu GQ, Cui YB, et al. Enhanced fuel ethanol production from rice straw hydrolysate by an inhibitor-tolerant mutant strain of Scheffersomyces stipitis. Rsc Adv. 2017;7(50):31180–8. Hou XR, Yao S. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Appl Microbiol Biot. 2012;93(6):2591–601. Senatham S, Chamduang T, Kaewchingduang Y, Thammasittirong A, Srisodsuk M, Elliston A, et al. Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate. Springerplus. 2016;5:1040. Bajwa PK, Shireen T, D’Aoust F, Pinel D, Martin VJJ, Trevors JT, et al. Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol Bioeng. 2009;104(5):892–900. Guo T, Tang Y, Zhang QY, Du TF, Liang DF, Jiang M, et al. Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. J Ind Microbiol Biot. 2012;39(3):401–7. Qi F, Kitahara Y, Wang ZT, Zhao XB, Du W, Liu DH. Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolyzate. J Chem Technol Biot. 2014;89(5):735–42. Wu YN, Jameel A, Xing XH, Zhang C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol. 2022;40(1):38–59. Tao Y, Wang H, Wang J, Jiang W, Jiang Y, Xin F, et al. Strategies to improve the stress resistance of Escherichia coli in industrial biotechnology. Biofuels, Bioprod Biorefin. 2022;16(4):1130–41. Zhu ZM, Zhang J, Ji XM, Fang Z, Wu ZM, Chen J, et al. Evolutionary engineering of industrial microorganisms—strategies and applications. Appl Microbiol Biot. 2018;102(11):4615–27. Liu H, Liu X, Jiang H, Liang C, Zhang ZC. Enhanced lactic acid production from P(2)O(5)-pretreated biomass by domesticated Pediococcus pentosaceus without detoxification. Bioprocess Biosyst Eng. 2021;44(10):2153–66. Qiu ZY, Fang C, Gao QQ, Bao J. A short-chain dehydrogenase plays a key role in cellulosic D-lactic acid fermentability of Pediococcus acidilactici. Bioresour Technol. 2020;297:122473. Qiu ZY, Fang C, He NL, Bao J. An oxidoreductase gene ZMO1116 enhances the p-benzoquinone biodegradation and chiral lactic acid fermentability of Pediococcus acidilactici. J Biotechnol. 2020;323:231–7. Jonssön LJ, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–12. He YQ, Zhang J, Bao J. Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation. Biotechnol Biofuels. 2016;9:19. Yi X, Zhang P, Sun J, Tu Y, Gao Q, Zhang J, et al. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock. J Biotechnol. 2016;217:112–21. Swasey SM, Nicholson HC, Copp SM, Bogdanov P, Gorovits A, Gwinn EG. Adaptation of a visible wavelength fluorescence microplate reader for discovery of near-infrared fluorescent probes. Rev Sci Instrum. 2018;89(9):095111. Zeng WZ, Guo LK, Xu S, Chen J, Zhou JW. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 2020;38(8):888–906. Lv XY, Song JL, Yu B, Liu HL, Li C, Zhuang YP, et al. High-throughput system for screening of high L-lactic acid-productivity strains in deep-well microtiter plates. Bioproc Biosyst Eng. 2016;39(11):1737–47. Zhu XD, Shi X, Wang SW, Chu J, Zhu WH, Ye BC, et al. High-throughput screening of high lactic acid-producing Bacillus coagulans by droplet microfluidic based flow cytometry with fluorescence activated cell sorting. Rsc Adv. 2019;9(8):4507–13. Si T, Chao R, Min YH, Wu YY, Ren W, Zhao HM. Automated multiplex genome-scale engineering in yeast. Nat Commun. 2017. https://doi.org/10.1038/ncomms15187. Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, et al. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresour Technol. 2017;245:1377–85. Ekkers DM, Branco Dos Santos F, Mallon CA, Bruggeman F, van Doorn GS. The omnistat: a flexible continuous-culture system for prolonged experimental evolution. Methods Ecol Evol. 2020;11(8):932–42. Wong BG, Mancuso CP, Kiriakov S, Bashor CJ, Khalil AS. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat Biotechnol. 2018;36(7):614–23. Jian X, Guo X, Wang J, Tan ZL, Xing XH, Wang L, et al. Microbial microdroplet culture system (MMC): an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution. Biotechnol Bioeng. 2020;117(6):1724–37. Liu L, Zeng WZ, Yu SQ, Li JH, Zhou JW. Rapid enabling of Gluconobacter oxydans resistance to high D-sorbitol concentration and high temperature by microdroplet-aided adaptive evolution. Front Bioeng Biotech. 2021;9: 731247. Yan W, Cao Z, Ding M, Yuan Y. Design and construction of microbial cell factories based on systems biology. Synth Syst Biotechnol. 2023;8(1):176–85. Yi X, Gu HQ, Gao QQ, Liu ZL, Bao J. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol Biofuels. 2015;8:153. Ouyang SP, Zou LH, Qiao H, Shi JJ, Zheng ZJ, Ouyang J. One-pot process for lactic acid production from wheat straw by an adapted Bacillus coagulans and identification of genes related to hydrolysate-tolerance. Bioresour Technol. 2020;315:123855. Tian XW, Liu XH, Zhang YF, Chen Y, Hang HF, Chu J, et al. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei. Bioresour Technol. 2021;323:124549. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804–7. Huang J, Xia T, Li G, Li X, Li Y, Wang Y, et al. Overproduction of native endo-beta-1,4-glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnol Biofuels. 2019;12:11. Wu L, Zhang M, Zhang R, Yu H, Wang H, Li J, et al. Down-regulation of OsMYB103L distinctively alters beta-1,4-glucan polymerization and cellulose microfibers assembly for enhanced biomass enzymatic saccharification in rice. Biotechnol Biofuels. 2021;14(1):245. Wang C, He G, Meng J, Wang S, Kong Y, Jiang J, et al. Improved lignocellulose saccharification of a Miscanthus reddish stem mutant induced by heavy-ion irradiation. GCB Bioenergy. 2020;12(12):1066–77. Hickey LT, NH A, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, et al. Breeding crops to feed 10 billion. Nat Biotechnol. 2019;37(7):744–54. Xie Q, Xu Z. Sustainable agriculture: from sweet sorghum planting and ensiling to ruminant feeding. Mol Plant. 2019;12(5):603–6. Cubas-Cano E, González-Fernández C, Ballesteros M, Tomas-Pejó E. Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate. Biofuel Bioprod Biorefin. 2018;12(2):290–303. Sun YQ, Li XY, Wu LD, Li Y, Li F, Xiu ZL, et al. The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover. Biotechnol Biofuels. 2021;14(1):233. Zou LH, Ouyang SP, Hu YL, Zheng ZJ, Ouyang J. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans. Biotechnol Biofuels. 2021;14(1):227. Geddes CC, Nieves IU, Ingram LO. Advances in ethanol production. Curr Opin Biotechnol. 2011;22(3):312–9. Kawaguchi H, Hasunuma T, Ogino C, Kondo A. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol. 2016;42:30–9. Shahab RL, Luterbacher JS, Brethauer S, Studer MH. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium. Biotechnol Bioeng. 2018;115(5):1207–15. Jiang Y, Liu Y, Yang X, Pan R, Mou L, Jiang W, et al. Compartmentalization of a synergistic fungal-bacterial consortium to boost lactic acid conversion from lignocellulose via consolidated bioprocessing. Green Chem. 2023;25:2011–20.