Microbial iron reduction during passive in situ remediation of an acidic mine pit lake mesocosm
Tài liệu tham khảo
Balkwill, 1988, Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments, Microb. Ecol., 16, 73, 10.1007/BF02097406
Bilgin, 2005, Effects of soluble ferri-hydroxide complexes on microbial neutralization of acid mine drainage, Environ. Sci. Technol., 39, 7826, 10.1021/es050315k
Blöthe, 2008, pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments, Appl. Environ. Microbiol., 74, 1019, 10.1128/AEM.01194-07
Blodau, 2003, Thermodynamics and organic matter: constraints on neutralization processes in sediments of highly acidic waters, Appl. Geochem, 18, 25, 10.1016/S0883-2927(02)00052-5
Bowman, 1997, Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel antarctic species with the ability to produce eicosapentaenoic acid (20:5w3) and grow anaerobically by dissimilatory Fe(III) reduction, Int. J. Syst. Bacteriol., 47, 1040, 10.1099/00207713-47-4-1040
Brugam, 1995, The neutralization of acidic coal mine lakes by additions of natural organic matter: a mesocosm test, Hydrobiologia, 316, 153, 10.1007/BF00016896
Brugam, 2000, The potential of organic matter additions for neutralizing surface mine lakes, Trans. Ill. State Acad. Sci, 93, 127
Büttner, 1998, Geostatistical analyses of surface sediments in an acidic mining lake, Water Air Soil Pollut., 108, 297, 10.1023/A:1005145029916
Cardenas, 2008, Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels, Appl. Environ. Microbiol., 74, 3718, 10.1128/AEM.02308-07
Cummings, 1999, Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments, Arch. Microbiol., 171, 183, 10.1007/s002030050697
Cummings, 2000, Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (lake Coeur d’ Alene, Idaho), Appl. Environ. Microbiol., 66, 154, 10.1128/AEM.66.1.154-162.2000
Evangelou, 1995
Frenzel, 1999, Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil, Soil Biol. Biochem, 31, 421, 10.1016/S0038-0717(98)00144-8
Frömmichen, 2003, Sediment conditioning with organic and/or inorganic carbon sources as a first step in alkalinity generation of acid mine pit lake water (pH 2–3), Environ. Sci. Technol, 37, 1414, 10.1021/es026131c
Frömmichen, 2004, Microcosm studies for neutralization of hypolimnic acid mine pit lake water (pH 2.6), Environ. Sci. Technol., 38, 1877, 10.1021/es034863e
Herzsprung, 2006, Routine analysis of sediment pore water of high ionic strength, Acta Hydrochim. Hydrobiol., 34, 593, 10.1002/aheh.200500656
Johnson, 1991, Ferric iron reduction by acidophilic heterotrophic bacteria, Appl. Environ. Microbiol., 57, 207, 10.1128/AEM.57.1.207-211.1991
Johnson, 2003, The microbiology of acid mine waters, Res. Microbiol., 154, 466, 10.1016/S0923-2508(03)00114-1
Koschorreck, 2002, Functions of straw for in situ remediation of acidic mining lakes, Water Air Soil Pollut. Focus, 2, 97, 10.1023/A:1019991326498
Koschorreck, 2007, Processes at the sediment water interface after addition of organic matter and lime to an acid pit lake mesocosm, Environ. Sci. Technol, 41, 1608, 10.1021/es0614823
Küsel, 1999, Microbial reduction of Fe(III) in acidic sediments: Isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose, Appl. Environ. Microbiol, 65, 3633, 10.1128/AEM.65.8.3633-3640.1999
Küsel, 2003, Microbial cycling of iron and sulfur in acidic coal mining lake sediments, Water Air Soil Pollut. Focus, 3, 67, 10.1023/A:1022103419928
Küsel, K., 2003b. Microbial reduction of Fe(III) in acidic freshwater habitats. International Workshop on Biochemical Processes Involving Iron Minerals in Natural Waters, Ascona, p. 47.
Lessmann, 2002, Seasonal succession of phytoplankton in acidic mining lakes, Verh. Internat. Verein. Limnol, 28, 1597
Lovley, 1987, Rapid assay for microbially reducible ferric iron in aquatic sediments, Appl. Environ. Microbiol., 53, 1536, 10.1128/AEM.53.7.1536-1540.1987
Lovley, 2000, Fe(III) und Mn(IV) reduction, 3
Martin, A.J., Crusius, J., McNee, J.J., Whittle, P., Pieters, R., Pedersen, T.F., 2003. Field-scale assessment of bioremediation strategies for two pit lakes using limnocorrals. In: Proceedings of the 6th ICARD, pp. 529–539.
Meier, 2000, A comparison of 35S-SO42- radiotracer techniques to determine sulphate reduction rates in laminated sediments, J. Microbiol. Methods, 41, 9, 10.1016/S0167-7012(00)00144-5
Meier, 2004, Microbial cycling of iron and sulfur in sediments of acidic and pH-neutral mining lakes in Lusatia (Brandenburg, Germany), Biogeochemistry, 67, 135, 10.1023/B:BIOG.0000015324.22890.b7
Meier, 2005, Temperature dependence of Fe(III) and sulfate reduction rates and its effect on growth and composition of bacterial enrichments from an acidic pit lake neutralization experiment, Geobiology, 3, 261, 10.1111/j.1472-4669.2006.00065.x
Ohmura, 2002, Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans, J. Bacteriol., 184, 2081, 10.1128/JB.184.8.2081-2087.2002
Petrie, 2003, Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI), Appl. Environ. Microbiol., 69, 7467, 10.1128/AEM.69.12.7467-7479.2003
Porsch, 2009, Importance of different physiological groups of iron reducing microorganisms in an acidic mining lake remediation experiment, Microb. Ecol, 57, 701, 10.1007/s00248-009-9505-0
Pronk, 1992, Anaerobic growth of Thiobacillus ferrooxidans, Appl. Environ. Microbiol., 58, 2227, 10.1128/AEM.58.7.2227-2230.1992
Roden, 1996, Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments, Limnol. Oceanogr, 41, 1733, 10.4319/lo.1996.41.8.1733
Roden, 1993, Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans, Appl. Environ. Microbiol., 59, 734, 10.1128/AEM.59.3.734-742.1993
Rowe, 2007, Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems, Environ. Microbiol, 9, 1761, 10.1111/j.1462-2920.2007.01294.x
Tebo, 1998, Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV) and Fe(III) as electron acceptors, FEMS Microbiol. Lett, 162, 193, 10.1111/j.1574-6968.1998.tb12998.x
Treude, 2003, Strain Fac12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales, FEMS Microbiol. Lett., 44, 261, 10.1016/S0168-6496(03)00048-5
Vile, 1993, Alkalinity generation by Fe(III) reduction versus sulphate reduction in wetlands constructed for acid mine drainage treatment, Water Air Soil Pollut, 69, 425, 10.1007/BF00478175
Wendt-Potthoff, 2002, Microbial Fe(III) reduction in acidic mining lake sediments after addition of an organic substrate and lime, Water Air Soil Pollut. Focus, 2, 81, 10.1023/A:1019959814202