Microbial influence on metal mobility and application for bioremediation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aubert, 1998, The Desulfuromonas acetoxidans triheme cytochrome c7 produced in Desulfovibrio desulfuricans retains its metal reductase activity, Appl. Environ. Microbiol., 64, 1308, 10.1128/AEM.64.4.1308-1312.1998
Barnes, 1991, A new process for the microbial removal of sulphate and heavy metals from contaminated waters extracted by a geohydrological control system, Trans. Inst. Chem. Eng., 69, 184
Barnes, 1994, Microbial removal of heavy metals and sulphate from contaminated groundwaters, 38
Beech, 1995, Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions, Int. Biodeterior. Biodegrad., 35, 59, 10.1016/0964-8305(95)00082-G
Bender, 1994, Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats, Appl. Environ. Microbiol., 60, 2311, 10.1128/AEM.60.7.2311-2315.1994
Beveridge, 1989
Bosecker, 1997, Bioleaching: metal solubilization by microorganisms, FEMS Microbiol. Rev., 20, 591, 10.1111/j.1574-6976.1997.tb00340.x
Bosshard, 1996, Metal leaching of fly-ash from municipal waste incineration by Aspergillus niger, Environ. Sci. Technol., 30, 3066, 10.1021/es960151v
Bousserrhine, 1999, Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted geothites, Geomicrobiol. J., 16, 245, 10.1080/014904599270622
Brandl, 1999, Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Process Metall., 9B, 569, 10.1016/S1572-4409(99)80146-1
Brasnakova, 1999, Accumulation of zirconium and nickel by Citrobacter sp, J. Chem. Technol. Biotechnol., 74, 509, 10.1002/(SICI)1097-4660(199906)74:6<509::AID-JCTB68>3.0.CO;2-D
Bridge, 1999, Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans, Microbiology, 145, 2987, 10.1099/00221287-145-10-2987
Brierley, 1990, Bioremediation of metal-contaminated surface and groundwaters, Geomicrobiol. J., 8, 201, 10.1080/01490459009377894
Burgstaller, 1993, Leaching of metals with fungi, J. Biotechnol., 27, 91, 10.1016/0168-1656(93)90101-R
Chang, 1999, Detoxification of mercury by immobilized mercuric reductase, J. Chem. Technol. Biotechnol., 74, 965, 10.1002/(SICI)1097-4660(199910)74:10<965::AID-JCTB135>3.0.CO;2-R
Chen, 1999, Engineering of improved microbes and enzymes for bioremediation, Curr. Opin. Biotechnol., 10, 137, 10.1016/S0958-1669(99)80023-8
Christensen, 1996, Treatment of acid-mine water by sulfate-reducing bacteria—results from a bench-scale experiment, Water Res., 30, 1617, 10.1016/0043-1354(96)00049-8
Eccles, 1999, Treatment of metal-contaminated wastes: why select a biological process?, Trends Biotechnol., 17, 462, 10.1016/S0167-7799(99)01381-5
Ewart, 1991, The extraction of metals from ores using bacteria, Adv. Inorg. Chem., 36, 103, 10.1016/S0898-8838(08)60038-0
Finneran, 2002, Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments, Environ. Microbiol., 4, 510, 10.1046/j.1462-2920.2002.00317.x
Flemming, 1995, Sorption sites in biofilms, Water Sci. Technol., 32, 27, 10.1016/0273-1223(96)00004-2
Francis, 1998, Biotransformation of uranium and other actinides in radioactive wastes, J. Alloys Compd., 271–273, 78, 10.1016/S0925-8388(98)00028-0
Francis, 1992, Biodegradation of metal citrate complexes and implications for toxic metal mobility, Nature, 356, 140, 10.1038/356140a0
Franz, 1991, Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production, Appl. Environ. Microbiol., 57, 769, 10.1128/AEM.57.3.769-774.1991
Franz, 1993, Influence of medium components and metabolic inhibitors on citric acid production by Penicillium simplicissimum, J. Gen. Microbiol., 139, 2101, 10.1099/00221287-139-9-2101
Gadd, 1993, Microbial formation and transformation of organometallic and organometalloid compounds, FEMS Microbiol. Rev., 11, 297, 10.1111/j.1574-6976.1993.tb00003.x
Gadd, 1993, Interactions of fungi with toxic metals, New Phytol., 124, 25, 10.1111/j.1469-8137.1993.tb03796.x
Gadd, 1996, Influence of microorganisms on the environmental fate of radionuclides, Endeavour, 20, 150, 10.1016/S0160-9327(96)10021-1
Gadd, 1999, Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes, Adv. Microb. Physiol., 41, 47, 10.1016/S0065-2911(08)60165-4
Gadd, 2000, Bioremedial potential of microbial mechanisms of metal mobilization and immobilization, Curr. Opin. Biotechnol., 11, 271, 10.1016/S0958-1669(00)00095-1
Gadd, 2000, Heavy metal pollutants: environmental and biotechnological aspects, 607
Gadd, 2001, Accumulation and transformation of metals by microorganisms, 225
Gadd, 2002, Interactions between microorganisms and metals/radionuclides: the basis of bioremediation, 179
Gadd, 2000, Fungal transformations of metals and metalloids, 237
Gadd, 1990, Biosorption of radionuclides by yeast and fungal biomass, J. Chem. Technol. Biotechnol., 49, 331, 10.1002/jctb.280490406
Gadd, 1993, Microbial treatment of metal pollution—a working biotechnology?, Trends Biotechnol., 11, 353, 10.1016/0167-7799(93)90158-6
Gharieb, 1998, Solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides, Mycol. Res., 102, 825, 10.1017/S0953756297005510
Gharieb, 1999, Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization, Mycol. Res., 103, 299, 10.1017/S0953756298007102
Glasauer, 2004, Transformation of metals and metalloids by bacteria and fungi
Hammack, 1992, The removal of nickel from mine waters using bacterial sulphate-reduction, Appl. Microbiol. Biotechnol., 37, 674, 10.1007/BF00240748
Hedin, 1991, Contaminant removal capabilities of wetlands constructed to treat coal mine drainage, 187
Hobman, 2000, Microbial mercury reduction, 177
Howe, 1997, Copper-binding proteins in ectomycorrhizal fungi, New Phytol., 135, 123, 10.1046/j.1469-8137.1997.00622.x
Karlson, 1993, Biological alkylation of selenium and tellurium, 185
Lloyd, 2001, Microbial detoxification of metals and radionuclides, Curr. Opin. Biotechnol., 12, 248, 10.1016/S0958-1669(00)00207-X
Lloyd, 1998, Enzymatic recovery of elemental palladium using sulfate-reducing bacteria, Appl. Environ. Microbiol., 64, 4607, 10.1128/AEM.64.11.4607-4609.1998
Lloyd, 2000, Bioremediation of radionuclide-containing wastewaters, 277
Lloyd, 1999, Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flow-through bioreactor, Appl. Environ. Microbiol., 65, 2691, 10.1128/AEM.65.6.2691-2696.1999
Lloyd, 1999, Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high activity strains and effect of process parameters, Biotechnol. Bioeng., 66, 122, 10.1002/(SICI)1097-0290(1999)66:2<122::AID-BIT5>3.0.CO;2-Y
Long, 1990, Selenium immobilization in a pond sediment at Kesterson Reservoir, J. Environ. Qual., 19, 302, 10.2134/jeq1990.00472425001900020017x
Lovley, 2000, Fe(III) and Mn(IV) reduction, 3
Lovley, 1997, Bioremediation of metal contamination, Curr. Opin. Biotechnol., 8, 285, 10.1016/S0958-1669(97)80005-5
Lyew, 1994, The biological treatment of acid-mine drainage under continuous-flow conditions in a reactor, Process Saf. Environ. Prot., 72, 42
Macaskie, 1991, The application of biotechnology to the treatment of wastes produced by the nuclear fuel cycle—biodegradation and bioaccumulation as a means of treating radionuclide-containing streams, Crit. Rev. Biotechnol., 11, 41, 10.3109/07388559109069183
Macaskie, 1989, Microbial metabolism, desolubilization and deposition of heavy metals: uptake by immobilized cells and application to the treatment of liquid wastes, 150
Macaskie, 1994, Enzymically-accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows, FEMS Microbiol. Rev., 14, 351, 10.1111/j.1574-6976.1994.tb00109.x
McLean, 2001, Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate, Appl. Environ. Microbiol., 67, 1076, 10.1128/AEM.67.3.1076-1084.2001
McLean, 2002, Interactions of bacteria and environmental metals, fine-grained mineral development, and bioremediation strategies, 227
Mercier, 1999, Decontamination of fly ash and used lime from municipal waste, Environ. Manage., 24, 517, 10.1007/s002679900251
Nies, 1999, Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol., 51, 730, 10.1007/s002530051457
Oremland, 2000, Dissimilatory reduction of selenate and arsenate in nature, 199
Oremland, 1990, Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments, Environ. Sci. Technol., 24, 1157, 10.1021/es00078a001
Oremland, 1991, In situ bacterial selenate reduction in the agricultural drainage systems of Western Nevada, Appl. Environ. Microbiol., 57, 615, 10.1128/AEM.57.2.615-617.1991
Pazirandeh, 1998, Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif, Appl. Environ. Microbiol., 64, 4072, 10.1128/AEM.64.10.4068-4072.1998
Perry, 1995, Sulfate-reducing bacteria and immobilization of metals, Mar. Georesour. Geotechnol., 13, 33, 10.1080/10641199509388277
Phillips, 1995, Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction, J. Indust. Microbiol., 14, 203, 10.1007/BF01569928
Rawlings, 1997, Mesophilic, autotrophic bioleaching bacteria: description, physiology and role, 229
Sayer, 2001, Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate, Mycol. Res., 105, 1261, 10.1016/S0953-7562(08)61998-X
Sayer, 1999, Lead mineral transformation by fungi, Curr. Biol., 9, 691, 10.1016/S0960-9822(99)80309-1
Schiewer, 2000, Biosorption processes for heavy metal removal, 329
Schinner, 1989, Extraction of zinc from an industrial waste by a Penicillium sp, Appl. Environ. Microbiol., 55, 1153, 10.1128/AEM.55.5.1153-1156.1989
Schippers, 1999, Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur, Appl. Environ. Microbiol., 65, 319, 10.1128/AEM.65.1.319-321.1999
Silver, 1996, Bacterial resistances to toxic metal ions—a review, Gene, 179, 9, 10.1016/S0378-1119(96)00323-X
Silver, 1998, Genes for all metals—a bacterial view of the periodic table, J. Ind. Microbiol. Biotech., 20, 1, 10.1038/sj.jim.2900483
Smith, 2000, Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms, J. Appl. Microbiol., 88, 983, 10.1046/j.1365-2672.2000.01066.x
Southam, 2000, Bacterial surface-mediated mineral formation, 257
Sreekrishnan, 1994, Heavy metal leaching from sewage sludges: a techno-economic evaluation of the process options, Environ. Technol., 15, 531, 10.1080/09593339409385459
Stephen, 1999, Developments in terrestrial bacterial remediation of metals, Curr. Opin. Biotechnol., 10, 230, 10.1016/S0958-1669(99)80040-8
Stolz, 1999, Bacterial respiration of arsenic and selenium, FEMS Microbiol. Rev., 23, 615, 10.1111/j.1574-6976.1999.tb00416.x
Stork, 1999, Accelerated volatilization rates of selenium from different soils, Biol. Trace Element Res., 69, 217, 10.1007/BF02783874
Strasser, 1994, High yield production of oxalic acid for metal leaching purposes by Aspergillus niger, FEMS Microbiol. Lett., 119, 365, 10.1111/j.1574-6968.1994.tb06914.x
Sukla, 1992, Leaching of copper converter slag with Aspergillus niger culture filtrate, BioMetals, 5, 169, 10.1007/BF01061324
Tamaki, 1992, Environmental biochemistry of arsenic, Rev. Environ. Contam. Toxicol., 124, 79, 10.1007/978-1-4612-2864-6_4
Tebo, 1998, Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors, FEMS Microbiol. Lett., 162, 193, 10.1111/j.1574-6968.1998.tb12998.x
Thompson-Eagle, 1992, Bioremediation of soils contaminated with selenium, 261, 10.1007/978-1-4612-2820-2_9
Tobin, 1994, Metal accumulation by fungi: applications in environmental biotechnology, J. Indust. Microbiol., 13, 126, 10.1007/BF01584110
Tolley, 1995, Lanthanum accumulation from acidic solutions using a Citrobacter sp. immobilised in a flow-through bioreactor, J. Indust. Microbiol., 14, 271, 10.1007/BF01569939
Tsezos, 1982, The mechanism of uranium biosorption by Rhizopus arrhizus, Biotechnol. Bioeng., 24, 385, 10.1002/bit.260240211
Tzeferis, 1994, Mineral leaching of non sulphide nickel ores using heterotrophic micro-organisms, Lett. Appl. Microbiol., 18, 209, 10.1111/j.1472-765X.1994.tb00849.x
Uhrie, 1996, In situ immobilisation of heavy metals associated with uranium leach mines by bacterial sulphate reduction, Hydrometallurgy, 43, 231, 10.1016/0304-386X(95)00087-W
Vachon, 1994, Chemical and biological leaching of aluminium from red mud, Environ. Sci. Technol., 28, 26, 10.1021/es00050a005
Valls, 1998, Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs, Biochimie, 80, 855, 10.1016/S0300-9084(00)88880-X
Verrecchia, 1996, A biogeochemical model for chalk alteration by fungi in semiarid environments, Biogeochemical, 35, 447, 10.1007/BF02183036
Vieira, 1995, Effect of clay particles on the behaviour of biofilms formed by Pseudomomonas fluorescens, Water Sci. Technol., 32, 45, 10.1016/0273-1223(96)00006-6
Wang, 2000, Microbial reduction of chromate, 225
Webb, 1998, Metal removal by sulphate-reducing bacteria from natural and constructed wetlands, J. Appl. Microbiol., 84, 240, 10.1046/j.1365-2672.1998.00337.x
White, 1996, A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate-reduction: potential applications to bioprecipitation of toxic metals as sulphides, J. Indust. Microbiol., 17, 116, 10.1007/BF01570054
White, 1996, Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response–surface analysis of the effects of dilution rate, sulphate and substrate concentration, Microbiology, 142, 2197, 10.1099/13500872-142-8-2197
White, 1997, An internal sedimentation bioreactor for laboratory-scale removal of toxic metals from soil leachates using biogenic sulphide precipitation, J. Indust. Microbiol., 18, 414, 10.1038/sj.jim.2900406
White, 1998, Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms, Microbiology, 144, 1407, 10.1099/00221287-144-5-1407
White, 1998, Reduction of metal cations and oxyanions by anaerobic and metal-resistant organisms: chemistry, physiology and potential for the control and bioremediation of toxic metal pollution, 233
White, 2000, Copper accumulation by sulphate-reducing bacterial biofilms and effects on growth, FEMS Microbiol. Lett., 183, 313, 10.1111/j.1574-6968.2000.tb08977.x
White, 1997, Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination, FEMS Microbiol. Rev., 20, 503, 10.1111/j.1574-6976.1997.tb00333.x
White, 1998, An integrated microbial process for the bioremediation of soil contaminated with toxic metals, Nature Biotechnol., 16, 572, 10.1038/nbt0698-572
Yong, 1995, Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH4UO2PO4, J. Chem. Technol. Biotechnol., 63, 101, 10.1002/jctb.280630202
Zhang, 1999, Effects of soil moisture, depth, and organic amendments on selenium volatilization, J. Environ. Qual., 28, 1321, 10.2134/jeq1999.00472425002800040037x