Microbial inactivation and shelf life of apple juice treated with high pressure carbon dioxide

Journal of Biological Engineering - Tập 3 - Trang 1-9 - 2009
Giovanna Ferrentino1, Mariacarmela Bruno1, Giovanna Ferrari1,2, Massimo Poletto1, Murat O Balaban3
1Department of Chemical and Food Engineering, University of Salerno via Ponte Don Melillo, Fisciano, Italy
2Centro Regionale di Competenza sulle Produzioni Agroalimentari (PRODAL S.c.a.r.l.), via Ponte Don Melillo, Fisciano, Italy
3Fishery Industrial Technology Center, University of Alaska Fairbanks FITC, Kodiak, USA

Tóm tắt

Apple juice prepared from 'Annurca' apple puree was treated with a HPCD batch system. The pH, °Brix, color parameters and microbial load of the treated apple juice were compared with those of thermally processed juice. Thermal processes were carried out at 35, 50, 65, 85°C and treatment times ranging between 10 and 140 minutes. Microbial inactivation kinetics indicated that 5-log reduction of natural flora in apple juice was achieved at 85°C and 60 minutes of treatment time for conventional thermal process and at 16.0 MPa, 60°C and 40 minutes for HPCD process. Results suggested that temperature played a fundamental role on HPCD treatment efficiency, with inactivation significantly enhanced when it increased from 35 to 60°C. Less significant was the role of the pressure at the tested levels of 7.0, 13.0 and 16.0 MPa. Also, 5-log reduction of natural flora in apple juice was obtained at lower temperatures by cyclic treatments of six compression and decompression steps. There were no significant differences between treated and untreated samples in °Brix (α = 0.05). Significant differences were detected in pH values between the untreated and HPCD treated samples (α = 0.05). There was a significant decrease in 'L*' and 'b*' values and also differences were detected in 'a*' values between the untreated and the HPCD treated samples (α = 0.05). Statistical analysis for °Brix, pH and color data showed no differences between the untreated and HPCD treated samples in the first 2 weeks of storage at 4°C. These results emphasize the potential use of HPCD in industrial applications.

Tài liệu tham khảo

Devlieghere F, Vermeiren L, Debevere J: New preservation technologies: Possibilities and limitation. International Dairy Journal 2004, 14: 273-285. 10.1016/j.idairyj.2003.07.002 Ballestra P, Cuq JL: Influence of Pressurized Carbon Dioxide on the Thermal Inactivation of Bacterial and Fungal Spores. Lebensmittel-Wissenschaft und-Technologie 1998, 31: 84-88. 10.1006/fstl.1997.0299 Hong SI, Pyun YR: Membrane damage and enzyme inactivation of L. plantarum by high pressure CO 2 treatment. International Journal of Food Microbiology 2001, 63: 19-28. 10.1016/S0168-1605(00)00393-7 Shimoda M, Cocunubo-Castellanos J, Kago H, Miyake M, Osajima Y, Hayakawa I: The influence of dissolved CO 2 concentration on the death kinetics of Saccharomyces cerevisiae . Journal of Applied Microbiology 2001, 91: 306-311. 10.1046/j.1365-2672.2001.01386.x Erkmen O, Karaman H: Kinetic studies on the high pressure carbon dioxide inactivation of Salmonella typhimuriun . Journal of Food Engineering 2001, 50: 25-28. 10.1016/S0260-8774(00)00191-6 Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, Van Impe JF, Devlieghere F: High pressure carbon dioxide inactivation of microorganisms in foods: past, present and future. International Journal of Food Microbiology 2007, 117: 1-28. 10.1016/j.ijfoodmicro.2007.02.018 Damar S, Balaban MO: Review of dense phase CO 2 technology: microbial and enzyme inactivation, and effects on food quality. J Food Science 2006, 71: R1-R11. 10.1111/j.1750-3841.2006.00254.x Liu XF, Zhang BQ, Li TJ: Effects of CO 2 compression and decompression rates on the physiology of microorganisms. Chinese Journal of Chemical Engineering 2005, 13: 140-143. Kincal D, Hill WS, Balaban MO, Portier KM, Wei CI, Marshall MR: A continuous high – pressure carbon dioxide system for microbial reduction in orange juice. J Food Science 2005, 70: M249-M254. Spilimbergo S, Mantoan D: Kinetic Analysis of Microorganisms Inactivation in Apple Juice by High Pressure Carbon Dioxide. International Journal of Food Engineering 2006, 2: 1-9. 10.2202/1556-3758.1065 Fenqi G, Jihong W, Fang C, Xiaojun L, Xiaosong H, Zhenhua Z, Zhengfu W: Change of polyphenol oxidase activity, color, and browning degree during storage of cloudy apple juice treated by supercritical carbon dioxide. Eur Food Res Technol 2006, 223: 427-432. 10.1007/s00217-005-0219-3 Fraser D: Bursting bacteria by release of gas pressure. Nature 1951, 167: 33-34. 10.1038/167033b0 Enomoto A, Nakamura K, Nagai K, Hashimoto T, Hakoda M: Inactivation of food microorganisms by high-pressure carbon dioxide treatment with or without explosive decompression. Bioscience, Biotechnology and Biochemistry 1997, 61: 1133-1137. Balaban MO, Marshall MR, Wicker L: Inactivation of enzymes in foods with pressurized CO 2 . US Patent 5,393,547 (Feb. 28, 1995) and WO Patent 90/02799 (Mar. 22, 1990) Balaban MO: Method and apparatus for continuous flow reduction of microbial and/or enzymatic activity in a liquid product using carbon dioxide. US Patent 6,723,365 B2 (Apr. 20, 2004) and US Patent Application 2004/0131739 A1 (Jul. 8, 2004) Connery KA, Shah P, Coleman L, Hunek B: Commercialization of Better Than Fresh™ dense phase carbon dioxide processing for liquid food. ISSF, Orlando; USA; 2005. Floris M: Melo e Pero nella Frutticoltura Italiana ed Europea. Milano, Federchimica Agrofarma Press; 1997. Lin HM, Chan EC, Chen C, Chen LF: Disintegration of yeast cells by pressurized carbon dioxide. Biotechnology Progress 1991, 7: 201-204. 10.1021/bp00009a001 Lin HM, Yang ZY, Chen LF: Inactivation of Saccharomyces cerevisiae by supercritical and subcritical carbon dioxide. Biotechnology Progress 1992, 8: 458-461. 10.1021/bp00017a013 Lin HM, Yang ZY, Chen LF: An improved method for disruption of microbial cells with pressurized carbon dioxide. Biotechnology Progress 1992, 8: 165-166. 10.1021/bp00014a012 Nakamura K, Enomoto A, Fukushima H, Nagai K, Hakoda M: Disruption of microbial cells by the flash discharge of high-pressure carbon dioxide. Bioscience, Biotechnology and Biochemistry 1994, 58: 1297-1301. Castor TP, Hong GT: Supercritical fluid disruption of and extraction from microbial cells. US Patent 5,380,826 (Jan. 10, 1995) Dillow AK, Dehghani F, Hrkach JS, Foster NR, Langer R: Bacterial inactivation by using near- and supercritical carbon dioxide. Proc Natl Acad Sci USA 1999, 96: 10344. 10.1073/pnas.96.18.10344 Hong SI, Park WS, Pyun YR: Inactivation of Lactobacillus sp. from kimchi by high pressure carbon dioxide. Lebensmittel-Wissenschaft und-Technologie 1997, 30: 681. 10.1006/fstl.1997.0250 Hong SI, Pyun YR: Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide. J Food Science 1999, 64: 728. 10.1111/j.1365-2621.1999.tb15120.x Arreola AG, Balaban MO, Marshall MR, Peplow AJ, Wei CI, Cornell JA: Supercritical carbon dioxide effects on some quality attributes of single strength orange juice. J Food Science 1991, 56: 1030-1033. 10.1111/j.1365-2621.1991.tb14634.x Jwa MK, Lim S, Koh JS: Inactivation of pectinesterase in citrus juice by supercritical carbon dioxide. Korean J Food Sci Technol 1996, 28: 790-795. Park SJ, Lee JI, Park J: Effects of a combined process of high pressure carbon dioxide and high hydrostatic pressure on the quality of carrot juice. Food Engineering and Physical Properties 2002, 67: 1827-1834.