Microbial fuel cells: novel biotechnology for energy generation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Suzuki, 1976, Fuel cells with hydrogen-forming bacteria, Hospital hygiene, Gesundheitswesen und desinfektion, 159
Roller, 1984, Electron-transfer coupling in microbial fuel-cells.1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria, J. Chem. Technol. Biotechnol. B Biotechnol., 34, 3, 10.1002/jctb.280340103
Habermann, 1991, Biological fuel cells with sulphide storage capacity, Appl. Microbiol. Biotechnol., 35, 128, 10.1007/BF00180650
Liu, 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38, 4040, 10.1021/es0499344
Liu, 2004, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38, 2281, 10.1021/es034923g
Rabaey, 2003, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531, 10.1023/A:1025484009367
Rabaey, 2004, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol., 70, 5373, 10.1128/AEM.70.9.5373-5382.2004
Schröder, 2003, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chem. Int. Ed. Engl., 42, 2880, 10.1002/anie.200350918
Lee, 2003, Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses, FEMS Microbiol. Lett., 223, 185, 10.1016/S0378-1097(03)00356-2
Kim, 2004, Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl. Microbiol. Biotechnol., 63, 672, 10.1007/s00253-003-1412-6
Champine, 2000, Electron transfer in the dissimilatory iron-reducing bacterium Geobacter metallireducens, Anaerobe, 6, 187, 10.1006/anae.2000.0333
Beliaev, 2001, MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1, Mol. Microbiol., 39, 722, 10.1046/j.1365-2958.2001.02257.x
Nevin, 2002, Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol., 68, 2294, 10.1128/AEM.68.5.2294-2299.2002
Chaudhuri, 2003, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol., 21, 1229, 10.1038/nbt867
Kim, J.R. et al. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. (in press)
Thauer, 1977, Energy-conservation in chemotropic anaerobic bacteria, Bacteriol. Rev., 41, 100, 10.1128/MMBR.41.1.100-180.1977
Logan, 2004, Extracting hydrogen electricity from renewable resources, Environ. Sci. Technol., 38, 160A, 10.1021/es040468s
McKinlay, 2004, Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli, Appl. Environ. Microbiol., 70, 3467, 10.1128/AEM.70.6.3467-3474.2004
Park, 2002, Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens, Appl. Microbiol. Biotechnol., 59, 58, 10.1007/s00253-002-0972-1
Park, 2001, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7, 297, 10.1006/anae.2001.0399
Delaney, 1984, Electron-transfer coupling in microbial fuel-cells.2. Performance of fuel-cells containing selected microorganism mediator substrate combinations, J. Chem. Technol. Biotechnol. B Biotechnol., 34, 13, 10.1002/jctb.280340104
Kostka, 2002, Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms, Appl. Environ. Microbiol., 68, 6256, 10.1128/AEM.68.12.6256-6262.2002
Pham, 2003, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell, FEMS Microbiol. Lett., 223, 129, 10.1016/S0378-1097(03)00354-9
Park, 1999, Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production, Appl. Environ. Microbiol., 65, 2912, 10.1128/AEM.65.7.2912-2917.1999
Choi, 2003, Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation, B. Kor. Chem. Soc., 24, 437, 10.5012/bkcs.2003.24.4.437
Lithgow, 1986, Interception of the electron-transport chain in bacteria with hydrophilic redox mediators.1. Selective improvement of the performance of biofuel cells with 2,6-disulfonated thionine as mediator, J. Chem. Res., 5, 178
Park, 2000, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol., 66, 1292, 10.1128/AEM.66.4.1292-1297.2000
Hernandez, 2001, Extracellular electron transfer, Cell. Mol. Life Sci., 58, 1562, 10.1007/PL00000796
Angenent, 2004, Production of bioenergy and biochemicals from industrial and agricultural wastewater, Trends Biotechnol., 22, 477, 10.1016/j.tibtech.2004.07.001
Rosso, 2003, Nonlocal bacterial electron transfer to hematite surfaces, Geochim. Cosmochim. Acta, 67, 1081, 10.1016/S0016-7037(02)00904-3
Rabaey, K. et al. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. (in press)
Hernandez, 2004, Phenazines and other redox-active antibiotics promote microbial mineral reduction, Appl. Environ. Microbiol., 70, 921, 10.1128/AEM.70.2.921-928.2004
Niessen, 2004, Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch, Electrochem. Commun., 6, 955, 10.1016/j.elecom.2004.07.010
Straub, 2004, Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling, Appl. Environ. Microbiol., 70, 5744, 10.1128/AEM.70.10.5744-5749.2004
Jang, 2004, Construction and operation of a novel mediator- and membrane-less microbial fuel cell, Process Biochem., 39, 1007, 10.1016/S0032-9592(03)00203-6
Park, 1999, Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation, J. Bacteriol., 181, 2403, 10.1128/JB.181.8.2403-2410.1999
Park, 2003, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng., 81, 348, 10.1002/bit.10501
Pham, 2004, Improvement of cathode reaction of a mediatorless microbial fuel cell, J. Microbiol. Biotechnol., 14, 324
Min, 2004, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol., 38, 5809, 10.1021/es0491026
Oh, 2004, Cathode performance as a factor in electricity generation in microbial fuel cells, Environ. Sci. Technol., 38, 4900, 10.1021/es049422p
Larminie, 2000
Gil, 2003, Operational parameters affecting the performance of a mediator- less microbial fuel cell, Biosens. Bioelectron., 18, 327, 10.1016/S0956-5663(02)00110-0
Rabaey, K. et al. (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Wat. Sci. Technol. (in press)
Rabaey, K. et al. (2004) Bacteria generate current through production and/or use of soluble redox mediators. In Annual meeting of the American Chemical Society 2004, American Chemical Society
Park, 2000, Electricity production in biofuel cell using modified graphite electrode with neutral red, Biotechnol. Lett., 22, 1301, 10.1023/A:1005674107841
Ross, C. et al. (1996) Handbook on Biogas Utilization (2nd edn), Muscle Shoals, AL: Southeastern Regional Biomass Energy Program
Vanherle, 2004, Biogas as a fuel source for SOFC co-generators, J. Power Sources, 127, 300, 10.1016/j.jpowsour.2003.09.027
Kennedy, S. Wind power planning: assessing long-term costs and benefits. Energy Policy 33, 1661-1675
Tsuchiya, 2004, Mass production cost of PEM fuel cell by learning curve, Internat. J. Hydrogen Energy, 29, 985, 10.1016/j.ijhydene.2003.10.011
Kim, B.H. et al. (2004) Microbial fuel cells and beyond. In Annual meeting of the American Chemical Society 2004, American Chemical Society
Weemaes, 2001, Other treatment techniques, 364
Liu, 2005, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39, 658, 10.1021/es048927c
Madigan, 2000
Rabaey, K. et al. (2005) Microbial fuel cells: performances and perspectives. In Biofuels for fuel cells: biomass fermentation towards usage in fuel cells (Lens, P.N. et al., eds) (in press)
Kim, 1999, Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors, Biotechnol. Tech., 13, 475, 10.1023/A:1008993029309
Kim, 1999, Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotechnol., 9, 127
Kim, 1999, A microbial fuel cell type lactate biosensor using a metal- reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotechnol., 9, 365
Kim, 2002, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol., 30, 145, 10.1016/S0141-0229(01)00478-1
Vega, 1987, Mediating effect of ferric chelate compounds in microbial fuel-cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens, Bioelectrochem. Bioenerg., 17, 217, 10.1016/0302-4598(87)80026-0
Cooney, 1996, Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: Evaluation for use in a biofuel cell, Enzyme Microb. Technol., 18, 358, 10.1016/0141-0229(95)00132-8
Bond, 2003, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69, 1548, 10.1128/AEM.69.3.1548-1555.2003
Vandevivere, 2001, Environmental applications, 531
Bond, 2002, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295, 483, 10.1126/science.1066771