Microbial fuel cells: novel biotechnology for energy generation

Trends in Biotechnology - Tập 23 Số 6 - Trang 291-298 - 2005
Korneel Rabaey1, Willy Verstraete
1Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Suzuki, 1976, Fuel cells with hydrogen-forming bacteria, Hospital hygiene, Gesundheitswesen und desinfektion, 159

Roller, 1984, Electron-transfer coupling in microbial fuel-cells.1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria, J. Chem. Technol. Biotechnol. B Biotechnol., 34, 3, 10.1002/jctb.280340103

Habermann, 1991, Biological fuel cells with sulphide storage capacity, Appl. Microbiol. Biotechnol., 35, 128, 10.1007/BF00180650

Liu, 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38, 4040, 10.1021/es0499344

Liu, 2004, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38, 2281, 10.1021/es034923g

Rabaey, 2003, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531, 10.1023/A:1025484009367

Rabaey, 2004, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol., 70, 5373, 10.1128/AEM.70.9.5373-5382.2004

Schröder, 2003, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chem. Int. Ed. Engl., 42, 2880, 10.1002/anie.200350918

Lee, 2003, Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses, FEMS Microbiol. Lett., 223, 185, 10.1016/S0378-1097(03)00356-2

Kim, 2004, Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl. Microbiol. Biotechnol., 63, 672, 10.1007/s00253-003-1412-6

Champine, 2000, Electron transfer in the dissimilatory iron-reducing bacterium Geobacter metallireducens, Anaerobe, 6, 187, 10.1006/anae.2000.0333

Beliaev, 2001, MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1, Mol. Microbiol., 39, 722, 10.1046/j.1365-2958.2001.02257.x

Nevin, 2002, Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol., 68, 2294, 10.1128/AEM.68.5.2294-2299.2002

Chaudhuri, 2003, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol., 21, 1229, 10.1038/nbt867

Kim, J.R. et al. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. (in press)

Thauer, 1977, Energy-conservation in chemotropic anaerobic bacteria, Bacteriol. Rev., 41, 100, 10.1128/MMBR.41.1.100-180.1977

Logan, 2004, Extracting hydrogen electricity from renewable resources, Environ. Sci. Technol., 38, 160A, 10.1021/es040468s

McKinlay, 2004, Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli, Appl. Environ. Microbiol., 70, 3467, 10.1128/AEM.70.6.3467-3474.2004

Park, 2002, Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens, Appl. Microbiol. Biotechnol., 59, 58, 10.1007/s00253-002-0972-1

Park, 2001, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7, 297, 10.1006/anae.2001.0399

Delaney, 1984, Electron-transfer coupling in microbial fuel-cells.2. Performance of fuel-cells containing selected microorganism mediator substrate combinations, J. Chem. Technol. Biotechnol. B Biotechnol., 34, 13, 10.1002/jctb.280340104

Kostka, 2002, Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms, Appl. Environ. Microbiol., 68, 6256, 10.1128/AEM.68.12.6256-6262.2002

Pham, 2003, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell, FEMS Microbiol. Lett., 223, 129, 10.1016/S0378-1097(03)00354-9

Park, 1999, Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production, Appl. Environ. Microbiol., 65, 2912, 10.1128/AEM.65.7.2912-2917.1999

Choi, 2003, Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation, B. Kor. Chem. Soc., 24, 437, 10.5012/bkcs.2003.24.4.437

Lithgow, 1986, Interception of the electron-transport chain in bacteria with hydrophilic redox mediators.1. Selective improvement of the performance of biofuel cells with 2,6-disulfonated thionine as mediator, J. Chem. Res., 5, 178

Park, 2000, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol., 66, 1292, 10.1128/AEM.66.4.1292-1297.2000

Hernandez, 2001, Extracellular electron transfer, Cell. Mol. Life Sci., 58, 1562, 10.1007/PL00000796

Angenent, 2004, Production of bioenergy and biochemicals from industrial and agricultural wastewater, Trends Biotechnol., 22, 477, 10.1016/j.tibtech.2004.07.001

Rosso, 2003, Nonlocal bacterial electron transfer to hematite surfaces, Geochim. Cosmochim. Acta, 67, 1081, 10.1016/S0016-7037(02)00904-3

Rabaey, K. et al. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. (in press)

Hernandez, 2004, Phenazines and other redox-active antibiotics promote microbial mineral reduction, Appl. Environ. Microbiol., 70, 921, 10.1128/AEM.70.2.921-928.2004

Niessen, 2004, Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch, Electrochem. Commun., 6, 955, 10.1016/j.elecom.2004.07.010

Straub, 2004, Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling, Appl. Environ. Microbiol., 70, 5744, 10.1128/AEM.70.10.5744-5749.2004

Jang, 2004, Construction and operation of a novel mediator- and membrane-less microbial fuel cell, Process Biochem., 39, 1007, 10.1016/S0032-9592(03)00203-6

Park, 1999, Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation, J. Bacteriol., 181, 2403, 10.1128/JB.181.8.2403-2410.1999

Park, 2003, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng., 81, 348, 10.1002/bit.10501

Pham, 2004, Improvement of cathode reaction of a mediatorless microbial fuel cell, J. Microbiol. Biotechnol., 14, 324

Min, 2004, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol., 38, 5809, 10.1021/es0491026

Oh, 2004, Cathode performance as a factor in electricity generation in microbial fuel cells, Environ. Sci. Technol., 38, 4900, 10.1021/es049422p

Larminie, 2000

Gil, 2003, Operational parameters affecting the performance of a mediator- less microbial fuel cell, Biosens. Bioelectron., 18, 327, 10.1016/S0956-5663(02)00110-0

Rabaey, K. et al. (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Wat. Sci. Technol. (in press)

Rabaey, K. et al. (2004) Bacteria generate current through production and/or use of soluble redox mediators. In Annual meeting of the American Chemical Society 2004, American Chemical Society

Park, 2000, Electricity production in biofuel cell using modified graphite electrode with neutral red, Biotechnol. Lett., 22, 1301, 10.1023/A:1005674107841

Ross, C. et al. (1996) Handbook on Biogas Utilization (2nd edn), Muscle Shoals, AL: Southeastern Regional Biomass Energy Program

Vanherle, 2004, Biogas as a fuel source for SOFC co-generators, J. Power Sources, 127, 300, 10.1016/j.jpowsour.2003.09.027

Kennedy, S. Wind power planning: assessing long-term costs and benefits. Energy Policy 33, 1661-1675

Tsuchiya, 2004, Mass production cost of PEM fuel cell by learning curve, Internat. J. Hydrogen Energy, 29, 985, 10.1016/j.ijhydene.2003.10.011

Kim, B.H. et al. (2004) Microbial fuel cells and beyond. In Annual meeting of the American Chemical Society 2004, American Chemical Society

Weemaes, 2001, Other treatment techniques, 364

Liu, 2005, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39, 658, 10.1021/es048927c

Madigan, 2000

Rabaey, K. et al. (2005) Microbial fuel cells: performances and perspectives. In Biofuels for fuel cells: biomass fermentation towards usage in fuel cells (Lens, P.N. et al., eds) (in press)

Kim, 1999, Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors, Biotechnol. Tech., 13, 475, 10.1023/A:1008993029309

Kim, 1999, Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotechnol., 9, 127

Kim, 1999, A microbial fuel cell type lactate biosensor using a metal- reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotechnol., 9, 365

Kim, 2002, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol., 30, 145, 10.1016/S0141-0229(01)00478-1

Vega, 1987, Mediating effect of ferric chelate compounds in microbial fuel-cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens, Bioelectrochem. Bioenerg., 17, 217, 10.1016/0302-4598(87)80026-0

Cooney, 1996, Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: Evaluation for use in a biofuel cell, Enzyme Microb. Technol., 18, 358, 10.1016/0141-0229(95)00132-8

Bond, 2003, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69, 1548, 10.1128/AEM.69.3.1548-1555.2003

Vandevivere, 2001, Environmental applications, 531

Bond, 2002, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295, 483, 10.1126/science.1066771

Tender, 2002, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821, 10.1038/nbt716