Microbial fuel cell as new technology for bioelectricity generation: A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rahimnejad, 2011, Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Appl. Energy, 88, 3999, 10.1016/j.apenergy.2011.04.017
Akdeniz, 2002, Recent energy investigations on fossil and alternative nonfossil resources in Turke, Energy Convers. Manage., 43, 575, 10.1016/S0196-8904(01)00036-X
Rahimnejad, 2009, Effective parameters on performance of microbial fuel cell, IEEE, 1, 411
Rahimnejad, 2012, A novel microbial fuel cell stack for continuous production of clean energy, Int. J. Hydrogen Energy, 37, 5992, 10.1016/j.ijhydene.2011.12.154
Peighambardoust, 2010, Review of the proton exchange membranes for fuel cell application, Int. J. Hydrogen Energy, 35, 9349, 10.1016/j.ijhydene.2010.05.017
Rahimnejad, 2011, Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Appl. Energy, 88, 3999, 10.1016/j.apenergy.2011.04.017
Tardast, 2012, Fabrication and operation of a novel membrane-less microbial fuel cell as a bioelectricity generator, Int. J. Environ. Eng., 3, 1
Potter, 1911, Electrical effects accompanying the decomposition of organic compounds, Proc. Royal Soc. London, Ser. B, Containing Pap. Biol. Charact., 84, 260, 10.1098/rspb.1911.0073
Lewis, 1966, Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells, Bacteriol. Rev., 30, 101, 10.1128/MMBR.30.1.101-113.1966
Kim, 1999, Mediator-less biofuel cel, Google Patents, 5976719
Kim, 1999, A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotechn., 9, 365
Mokhtarian, 2012, Bioelectricity generation in biological fuel cell with and without mediators, World Appl. Sci. J., 18, 559
Ghasemi, 2012, Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance, Int. J. Hydrogen Energy, 38, 5480, 10.1016/j.ijhydene.2012.09.148
Antonopoulou, 2010, Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell, Biochem. Eng. J., 50, 10, 10.1016/j.bej.2010.02.008
Rahimnejad, 2011, Effect of mass transfer on performance of microbial fuel cell, Intech, 5, 233
Sharma, 2010, The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs), Bioresource. Technol., 101, 1844, 10.1016/j.biortech.2009.10.040
Najafpour, 2011, The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents, Energy Sourc., 33, 2239, 10.1080/15567036.2010.518223
Rahimnejad, 2009, Low voltage power generation in abiofuel cell using anaerobic cultures, World Appl. Sci. J., 6, 1585
Huang, 2008, Electricity production from xylose using a mediator-less microbial fuel cell, Bioresource. Technol., 99, 4178, 10.1016/j.biortech.2007.08.067
Chen, 2008, Application of biocathode in microbial fuel cells: cell performance and microbial community, Appl. Microbiol. Biot., 79, 379, 10.1007/s00253-008-1451-0
Logan, 2006, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016
Park, 2014, Enhanced electrical contact of microbes using Fe3 O4/CNT nanocomposite anode in mediator-less microbial fuel cell, Biosens Bioelectron., 58, 75, 10.1016/j.bios.2014.02.044
Virdis, 2011
Rahimnejad, 2012, Acetone removal and bioelectricity generation in dual chamber Microbial Fuel Cell, Am. J. Biochem. Biotech., 8, 304, 10.3844/ajbbsp.2012.304.310
Rahimnejad, 2011, Effect of mass transfer on performance of microbial fuel cell, Mass Trans. Chem. Eng. Proc., 5, 233
Hassan, 2014, Electricity generation from rice straw using a microbial fuel cell, Int. J. Hydro. Eng., 39, 9490, 10.1016/j.ijhydene.2014.03.259
Oh, 2004, Cathode performance as a factor in electricity generation in microbial fuel cells, Environ. Sci. Technol., 38, 4900, 10.1021/es049422p
Kim, 2007, Challenges in microbial fuel cell development and operation, Appl. Microbiol. Biot., 76, 485, 10.1007/s00253-007-1027-4
Schröder, 2007, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys, 9, 2619, 10.1039/B703627M
H.J. Kim, S.W. Hong, H.D. Kim, S.Y. Yang, S.H. Chung, A study on quenching meshes as a possible controlling tool of hydrogen explosion in nuclear power plants. In: 10th International Conference on Nuclear Engineering, American Society of Mechanical Engineers, vol. 2, 2002, pp. 145–151.
Aelterman, 2006, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environ. Sci. Technol., 40, 3388, 10.1021/es0525511
Huggins, 2014, Biochar as a sustainable electrode material for electricity production in microbial fuel cells, Bioresource Technol., 157, 114, 10.1016/j.biortech.2014.01.058
Wei, 2011, Recent progress in electrodes for microbial fuel cells, Bioresource Technol., 102, 9335, 10.1016/j.biortech.2011.07.019
Scott, 2007, Application of modified carbon anodes in microbial fuel cells, Process. Saf. Environ., 85, 481, 10.1205/psep07018
Zhou, 2011, An overview of electrode materials in microbial fuel cells, J. Power Sources, 196, 4427, 10.1016/j.jpowsour.2011.01.012
Qiao, 2007, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells, J. Power Sources, 170, 79, 10.1016/j.jpowsour.2007.03.048
Niessen, 2004, Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells, Electrochem. Commun., 6, 571, 10.1016/j.elecom.2004.04.006
Watanabe, 2008, Recent developments in microbial fuel cell technologies for sustainable bioenergy, J. Biosci. Bioeng., 106, 528, 10.1263/jbb.106.528
Zhang, 2007, Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes, Electrochem. Commun., 9, 349, 10.1016/j.elecom.2006.09.025
Jung, 2007, Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors, Appl. Microbiol. Biot., 77, 393, 10.1007/s00253-007-1162-y
Kim, 2007, Electricity generation and microbial community analysis of alcohol powered microbial fuel cells, Bioresource. Technol., 98, 2568, 10.1016/j.biortech.2006.09.036
Grayc, 2005, Electricity generation from cysteine in a microbial fuel cell, Water Res., 39, 942, 10.1016/j.watres.2004.11.019
Bond, 2002, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295, 483, 10.1126/science.1066771
Tender, 2002, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821, 10.1038/nbt716
Park, 2002, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng., 81, 348, 10.1002/bit.10501
Schröder, 2003, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chem. Int. Edit., 42, 2880, 10.1002/anie.200350918
Hassan, 2012, Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell, Enzyme. Microb. Tech., 51, 269, 10.1016/j.enzmictec.2012.07.008
Zou, 2008, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, Int. J. Hydrogen Energy, 33, 4856, 10.1016/j.ijhydene.2008.06.061
C. Bettin, Applicability and Feasibility of Incorporating Microbial Fuel Cell Technology into Implantable Biomedical Devices, 2006. http://hdl.handle.net/1811/6443.
Zhou, 2012, Microbial fuel cells for bioenergy and bioproducts
Zhou, 2013, Bioelectrochemistry of microbial fuel cells and their potential applications in bioenergy, Bioenergy Research: Adv. Appl., 131
Gil, 2003, Operational parameters affecting the performannce of a mediator-less microbial fuel cell, Biosens. Bioelectron., 18, 327, 10.1016/S0956-5663(02)00110-0
Nevin, 2008, Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells, Environ. Microbiol., 10, 2505, 10.1111/j.1462-2920.2008.01675.x
Logan, 2006, Microbial fuel cells-challenges and applications, Environ. Sci. Technol., 40, 5172, 10.1021/es0627592
Chang, 2005, Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors, Biosens. Bioelectron., 20, 1856, 10.1016/j.bios.2004.06.003
Lefebvre, 2009, Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells, Bioresource. Technol., 100, 4907, 10.1016/j.biortech.2009.04.061
Fornero, 2008, Microbial fuel cell performance with a pressurized cathode chamber, Environ. Sci. Technol., 42, 8578, 10.1021/es8015292
Huang, 2011, Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells, Bioresource. Technol., 102, 316, 10.1016/j.biortech.2010.06.096
Rahimnejad, 2012, Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture, J. Microbio., 50, 575, 10.1007/s12275-012-2135-0
He, 2006, Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18, 2009, 10.1002/elan.200603628
Srikanth, 2012, Change in electrogenic activity of the microbial fuel cell (MFC) with the function of biocathode microenvironment as terminal electron accepting condition: influence on overpotentials and bio-electro kinetics, Bioresource. Technol., 119, 241, 10.1016/j.biortech.2012.05.097
Rismani-Yazdi, 2008, Cathodic limitations in microbial fuel cells: an overview, J. Power Sources, 180, 683, 10.1016/j.jpowsour.2008.02.074
Zhou, 2013, Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts, J. Chem. Technol. Biot., 88, 508, 10.1002/jctb.4004
Zhang, 2012, Efficient electricity generation from sewage sludge using biocathode microbial fuel cell, Water Res., 46, 43, 10.1016/j.watres.2011.10.036
Ghasemi, 2013, Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review, J. Alloys Compd., 580, 245, 10.1016/j.jallcom.2013.05.094
Logan, 2008
Deng, 2009, Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell, J. Power Sources, 195, 1130, 10.1016/j.jpowsour.2009.08.092
Ghasemi, 2013, Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells, Int. J. Hydrog. Energy, 38, 9533, 10.1016/j.ijhydene.2013.01.177
Park, 2002, Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens, Appl. Microbiol. Biot., 59, 58, 10.1007/s00253-002-0972-1
Ter Heijne, 2006, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cell, Environ. Sci. Technol., 40, 5200, 10.1021/es0608545
You, 2008, Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells, Biosens. Bioelectron., 23, 1157, 10.1016/j.bios.2007.10.010
Rahimnejad, 2010, Nafion as a nanoproton conductor in microbial fuel cells, Turkish J. Eng. Environ. Sci., 34, 289
Kim, 2007, Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells, Environ. Sci. Technol., 41, 1004, 10.1021/es062202m
Harnisch, 2009, Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems, ChemSusChem, 2, 921, 10.1002/cssc.200900111
Liu, 2005, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol., 39, 5488, 10.1021/es050316c
Li, 2011, Recent advances in the separators for microbial fuel cells, Bioresource. Technol., 102, 244, 10.1016/j.biortech.2010.03.090
Min, 2005, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res., 39, 1675, 10.1016/j.watres.2005.02.002
Rabaey, 2003, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531, 10.1023/A:1025484009367
Rabaey, 2005, Tubular microbial fuel cells for efficient electricity generation, Environ. Sci. Technol., 39, 8077, 10.1021/es050986i
Mohan, 2008, Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane, Biosens. Bioelectron., 23, 1326, 10.1016/j.bios.2007.11.016
Zhang, 2009, Separator characteristics for increasing performance of microbial fuel cells, Environ. Sci. Technol., 43, 8456, 10.1021/es901631p
Zuo, 2007, Tubular membrane cathodes for scalable power generation in microbial fuel cells, Environ. Sci. Technol., 41, 3347, 10.1021/es0627601
Sun, 2009, Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation, J. Power Sources, 187, 471, 10.1016/j.jpowsour.2008.11.022
Fan, 2007, Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration, J. Power Sources, 171, 348, 10.1016/j.jpowsour.2007.06.220
Zhuang, 2009, Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells, Biosens. Bioelectron., 24, 3652, 10.1016/j.bios.2009.05.032
Min, 2005, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res., 39, 1675, 10.1016/j.watres.2005.02.002
Liu, 2005, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39, 658, 10.1021/es048927c
Oh, 2006, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biot., 70, 162, 10.1007/s00253-005-0066-y
Sund, 2007, Effect of electron mediators on current generation and fermentation in a microbial fuel cell, Appl. Microbiol. Biot., 76, 561, 10.1007/s00253-007-1038-1
Hideo, 1991
Rozendal, 2008, Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater, Water Sci. Technol., 57, 1757, 10.2166/wst.2008.043
Zuo, 2008, Ion exchange membrane cathodes for scalable microbial fuel cells, Environ. Sci. Technol., 42, 6967, 10.1021/es801055r
Rahimnejad, 2012, Synthesis, characterization and application studies of self-made Fe304/PES nanocomposite membranes in microbial fuel cell, Electrochim. Acta, 85, 700, 10.1016/j.electacta.2011.08.036
Jana, 2010, Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder, Int. J. Hydrogen Energy, 35, 5681, 10.1016/j.ijhydene.2010.03.048
W.G. Grot, LAMINATES OF SUPPORT MATERIAL AND FLUORINATED POLYMER CONTAINING PENDANT SIDE CHAINS CONTAINING SULFONYL GROUPS, 1974, Google Patents.
Oh, 2006, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biot., 70, 162, 10.1007/s00253-005-0066-y
A. Appleby, F. Foulkes, Fuel Cell Handbook, Chap. 12. Van Nostrand Reinhold, New York, 1989.
Doyle, 2003, Handbook of fuel cells fundamentals, handbook of fuel cells fundamentals, technology and applications, Fuel Cell Technol. Appl., 3
Zawodzinski, 1995, The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes, Electrochim. Acta, 40, 297, 10.1016/0013-4686(94)00277-8
Du, 2007, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioener, Biotechnol. Adv., 25, 464, 10.1016/j.biotechadv.2007.05.004
Larrosa-Guerrero, 2010, Effect of temperature on the performance of microbial fuel cells, Fuel, 89, 3985, 10.1016/j.fuel.2010.06.025
Harnisch, 2008, The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells, Environ. Sci. Technol., 42, 1740, 10.1021/es702224a
Pant, 2010, Use of novel permeable membrane and air cathodes in acetate microbial fuel cells, Electrochim. Acta, 55, 7710, 10.1016/j.electacta.2009.11.086
Ieropoulos, 2009, Improved energy output levels from small-scale Microbial Fuel Cells, Bioelectrochemistry, 78, 44, 10.1016/j.bioelechem.2009.05.009
Vermeiren, 2008, The influence of manufacturing parameters on the properties of macroporous Zirfon® separators, J. Porous. Mater., 15, 259, 10.1007/s10934-006-9084-0
Arico, 2006, Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells, Desalination, 199, 271, 10.1016/j.desal.2006.03.065
Hung, 2011, Effect of sulfonated carbon nanofiber-supported Pt on performance of Nafion®-based self-humidifying composite membrane for proton exchange membrane fuel cell, J. Power Sources, 196, 126, 10.1016/j.jpowsour.2010.07.017
Ijeri, 2010, Nafion and carbon nanotube nanocomposites for mixed proton and electron conduction, J. Membrane. Sci., 363, 265, 10.1016/j.memsci.2010.07.037
Rahimnejad, 2012, S.H.A., Synthesis, characterization and application studies of self-made Fe3 O4 /PES nanocomposite membranes in microbial fuel cell, Electrochim. Acta, 15, 700, 10.1016/j.electacta.2011.08.036
Xu, 2012, Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell, Water Res., 46, 1817, 10.1016/j.watres.2011.12.060
Ghasemi, 2012, New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems, Chem. Eng. J., 184, 82, 10.1016/j.cej.2012.01.001
Rozendal, 2006, Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol., 40, 5206, 10.1021/es060387r
Zhuang, 2012, Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment, Bioresource Technol., 106, 82, 10.1016/j.biortech.2011.11.019
Dihrab, 2009, Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells, Renew. Sust. Energy Rev., 13, 1663, 10.1016/j.rser.2008.09.029
Mehta, 2003, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, 114, 32, 10.1016/S0378-7753(02)00542-6
Mohan, 2008, Electricity generation using microbial fuel cells, Energy, 33, 423
Izadi, 2013, Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell, Biofuel Research J., 1, 34, 10.18331/BRJ2015.1.1.8
Najafpour, 2010, Bioconversion of whey to electrical energy in a biofuel cell using Saccharomyces cerevisiae, World Appl. Sci. J., 8, 1
Habermann, 1991, Biological fuel cells with sulphide storage capacity, APPL. Microbiol. Biot., 35, 128, 10.1007/BF00180650
Wang, 2012, A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment, Appl. Energy, 98, 230, 10.1016/j.apenergy.2012.03.029
Mehmood, 2009, In situ microbial treatment of landfill leachate using aerated lagoons, Bioresource. Technol., 100, 2741, 10.1016/j.biortech.2008.11.031
Gotvajn, 2009, Comparison of different treatment strategies for industrial landfill leachate, J. Hazard. Mater., 162, 1446, 10.1016/j.jhazmat.2008.06.037
Rabaey, 2006, Microbial fuel cells for sulfide removal, Environ. Sci. Technol., 40, 5218, 10.1021/es060382u
Puig, 2006, Microbial fuel cell application in landfill leachate treatment, J. Hazard. Mater., 185, 763, 10.1016/j.jhazmat.2010.09.086
Kim, 2005, Evaluation of procedures to acclimate a microbial fuel cell for electricity production, Appl. Microbiol. Biot., 68, 23, 10.1007/s00253-004-1845-6
Catal, 2008, Electricity production from twelve monosaccharides using microbial fuel cells, J. Power Sources, 175, 196, 10.1016/j.jpowsour.2007.09.083
Kim, 2008, Removal of odors from swine wastewater by using microbial fuel cells, Appl. Environ. Microb., 74, 2540, 10.1128/AEM.02268-07
Ieropoulos, 2005, Energy accumulation and improved performance in microbial fuel cells, J. Power Sources, 145, 253, 10.1016/j.jpowsour.2004.11.070
Shantaram, 2005, Wireless sensors powered by microbial fuel cells, Environ. Sci. Technol., 39, 5037, 10.1021/es0480668
Wilson, 1992, Progress toward the development of an implantable sensor for glucose, Clin. Chem., 38, 1613, 10.1093/clinchem/38.9.1613
Gerritsen, 1999, Performance of subcutaneously implanted glucose sensors for continuous monitoring, Neth. J. Med., 54, 167, 10.1016/S0300-2977(99)00006-6
Morris, 2008, Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater, J. Environ. Sci. Heal. A, 43, 18, 10.1080/10934520701750389
Luo, 2009, Phenol degradation in microbial fuel cells, Chem. Eng. J., 147, 259, 10.1016/j.cej.2008.07.011