Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nevin, 2010, Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds, MBio, 1, e00103, 10.1128/mBio.00103-10
Nevin, 2011, Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms, Appl. Environ. Microbiol., 77, 2882, 10.1128/AEM.02642-10
Batlle-Vilanova, 2016, Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture, J. Chem. Technol. Biotechnol., 91, 921, 10.1002/jctb.4657
Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F
Patil, 2015, Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2, Environ. Sci. Technol., 49, 8833, 10.1021/es506149d
Bajracharya, 2015, Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode, Bioresour. Technol., 195, 14, 10.1016/j.biortech.2015.05.081
Marshall, 2012, Electrosynthesis of commodity chemicals by an autotrophic microbial community, Appl. Environ. Microbiol., 78, 8412, 10.1128/AEM.02401-12
Marshall, 2013, Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes, Environ. Sci. Technol., 47, 6023, 10.1021/es400341b
Labelle, 2014, Influence of acidic ph on hydrogen and acetate production by an electrosynthetic microbiome, PLoS One, 9, 1, 10.1371/journal.pone.0109935
Rabaey, 2010, Microbial electrosynthesis - revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422
Ganigue, 2015, Microbial electrosynthesis of butyrate from carbon dioxide, Chem. Commun., 51, 3235, 10.1039/C4CC10121A
Bajracharya, 2016, Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide, Environ. Sci. Pollut. Res., 10.1007/s11356-016-7196-x
Bajracharya, 2017, Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis, Bioelectrochemistry, 113, 26, 10.1016/j.bioelechem.2016.09.001
Zhang, 2014, Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems, Chinese J. Appl. Environ. Biol., 20, 174
Ramió-Pujol, 2015, How can alcohol production be improved in carboxydotrophic clostridia?, Process Biochem., 50, 1047, 10.1016/j.procbio.2015.03.019
Demler, 2011, Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii, Biotechnol. Bioeng., 108, 470, 10.1002/bit.22935
Logan, 2008, Critical review microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environ. Sci. Technol., 42, 8630, 10.1021/es801553z
Jourdin, 2016, Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide, ChemElectroChem., 3, 581, 10.1002/celc.201500530
Blanchet, 2015, Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction, Energy Environ. Sci., 8, 3731, 10.1039/C5EE03088A
Herrero, 1983, End-product inhibition in anaerobic fermentations, Trends Biotechnol., 1, 49, 10.1016/0167-7799(83)90069-0
Agler, 2012, Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates, Energy Environ. Sci., 5, 8189, 10.1039/c2ee22101b
Ozadali, 1996, Fed-batch fermentation with and without on-line extraction for propionic and acetic acid production by Propionibacterium acidipropionici, Appl. Microbiol. Biotechnol., 44, 710
Xue, 2014, Integrated butanol recovery for an advanced biofuel: current state and prospects, Appl. Microbiol. Biotechnol., 98, 3463, 10.1007/s00253-014-5561-6
Ganigué, 2016, Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.00702
Patil, 2015, A logical data representation framework for electricity-driven bioproduction processes, Biotechnol. Adv., 33, 736, 10.1016/j.biotechadv.2015.03.002
Mardis, 2008, Next-generation DNA sequencing methods, Annu. Rev. Genomics Hum. Genet., 9, 387, 10.1146/annurev.genom.9.081307.164359
Takahashi, 2014, Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing, PLoS One, 9, 10.1371/journal.pone.0105592
Edgar, 2013, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, 10, 996, 10.1038/nmeth.2604
Hall, 1999, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 41, 95
Fontàs, 2000, 178, 131
Steinbusch, 2008, Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures, Water Res., 42, 4059, 10.1016/j.watres.2008.05.032
Vasudevan, 2014, Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes, Bioresour. Technol., 151, 378, 10.1016/j.biortech.2013.09.105
Puig, 2016, Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity, Bioresour. Technol.
Skidmore, 2013, Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency, Biomass Bioenergy, 55, 156, 10.1016/j.biombioe.2013.01.034
Kracke, 2015, Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems, Front. Microbiol., 6, 1, 10.3389/fmicb.2015.00575
McInerney, 1981, Basic principles of bioconversions in anaerobic digestion and methanogenesis, Biomass Convers. Process. Energy Fuels, 277, 10.1007/978-1-4757-0301-6_15
Peters, 1999, Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen, Curr. Microbiol., 38, 285, 10.1007/PL00006803
Yerushalmi, 1985, Effect of increased hydrogen partial pressure on the acetone-butanol fermentation by Clostridium acetobutylicum, Appl. Microbiol. Biotechnol., 22, 103, 10.1007/BF00250028
Richter, 2016, Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression, Energy Environ. Sci., 9, 2392, 10.1039/C6EE01108J
Sarkar, 2017, Acidogenesis driven by hydrogen partial pressure towards bioethanol production through fatty acids reduction, Energy, 118, 425, 10.1016/j.energy.2016.12.017
González-Cabaleiro, 2013, Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses, Energy Environ. Sci., 6, 3780, 10.1039/c3ee42754d
Ganigué, 2015, Conversion of sewage sludge to commodity chemicals via syngas fermentation, Water Sci. Technol., 72, 415, 10.2166/wst.2015.222
Van Eerten-jansen, 2012, Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives, Int. J. Energy Res., 36, 809, 10.1002/er.1954
Iijima, 2008, Modified multiplex PCR methods for comprehensive detection of Pectinatus and beer-spoilage cocci, Biosci. Biotechnol. Biochem., 72, 2764, 10.1271/bbb.80297
Juvonen, 2006, Megasphaera paucivorans sp. nov., Megasphaera sueciensis sp. nov. and Pectinatus haikarae sp. nov., isolated from brewery samples, and emended description of the genus Pectinatus, Int. J. Syst. Evol. Microbiol., 56, 695, 10.1099/ijs.0.63699-0
Butt, 1997, Direct electrochemistry of Megasphaera elsdenii iron hydrogenase. Definition of the enzyme's catalytic operating potential and quantitation of the catalytic behaviour over a continuous potential range, Eur. J. Biochem., 245, 116, 10.1111/j.1432-1033.1997.00116.x
Spirito, 2014, Chain elongation in anaerobic reactor microbiomes to recover resources from waste, Curr. Opin. Biotechnol., 27C, 115, 10.1016/j.copbio.2014.01.003
Marx, 2011, Genome sequence of the ruminal bacterium Megasphaera elsdenii, J. Bacteriol., 193, 5578, 10.1128/JB.05861-11
Schink, 1984, Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium, Arch. Microbiol., 137, 250, 10.1007/BF00414553
Cotter, 2009, Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells, Bioprocess Biosyst. Eng., 32, 369, 10.1007/s00449-008-0256-y
Raes, 2017, Continuous long-term bioelectrochemical chain elongation to butyrate, ChemElectroChem., 4, 1, 10.1002/celc.201600587
Daniell, 2012, Commercial Biomass Syngas Fermentation
Thauer, 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev., 41, 100, 10.1128/MMBR.41.1.100-180.1977
Agler, 2011, Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform, Trends Biotechnol., 29, 70, 10.1016/j.tibtech.2010.11.006