Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction

Bioelectrochemistry - Tập 117 - Trang 57-64 - 2017
Pau Batlle‐Vilanova1,2, Ramon Ganigué3,2, Sara Ramió‐Pujol4,2, Lluı́s Bañeras4, Gerard J. Machado2, Manuela Hidalgo5, M. Dolors Balaguer2, Jesús Colprim2, Sebastià Puig2
1FCC Aqualia, Department of Innovation and Technology, Balmes Street, 36, 6th Floor, 08007 Barcelona, Spain
2LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Catalonia, Spain
3Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
4Group of Molecular Microbial Ecology, Institute of Aquatic Ecology (IEA), University of Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain
5Department of chemistry, University of Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Nevin, 2010, Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds, MBio, 1, e00103, 10.1128/mBio.00103-10

Nevin, 2011, Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms, Appl. Environ. Microbiol., 77, 2882, 10.1128/AEM.02642-10

Batlle-Vilanova, 2016, Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture, J. Chem. Technol. Biotechnol., 91, 921, 10.1002/jctb.4657

Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F

Patil, 2015, Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2, Environ. Sci. Technol., 49, 8833, 10.1021/es506149d

Bajracharya, 2015, Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode, Bioresour. Technol., 195, 14, 10.1016/j.biortech.2015.05.081

Marshall, 2012, Electrosynthesis of commodity chemicals by an autotrophic microbial community, Appl. Environ. Microbiol., 78, 8412, 10.1128/AEM.02401-12

Marshall, 2013, Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes, Environ. Sci. Technol., 47, 6023, 10.1021/es400341b

Labelle, 2014, Influence of acidic ph on hydrogen and acetate production by an electrosynthetic microbiome, PLoS One, 9, 1, 10.1371/journal.pone.0109935

Rabaey, 2010, Microbial electrosynthesis - revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422

Ganigue, 2015, Microbial electrosynthesis of butyrate from carbon dioxide, Chem. Commun., 51, 3235, 10.1039/C4CC10121A

Bajracharya, 2016, Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide, Environ. Sci. Pollut. Res., 10.1007/s11356-016-7196-x

Bajracharya, 2017, Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis, Bioelectrochemistry, 113, 26, 10.1016/j.bioelechem.2016.09.001

Zhang, 2014, Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems, Chinese J. Appl. Environ. Biol., 20, 174

Ramió-Pujol, 2015, How can alcohol production be improved in carboxydotrophic clostridia?, Process Biochem., 50, 1047, 10.1016/j.procbio.2015.03.019

Demler, 2011, Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii, Biotechnol. Bioeng., 108, 470, 10.1002/bit.22935

Logan, 2008, Critical review microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environ. Sci. Technol., 42, 8630, 10.1021/es801553z

Jourdin, 2016, Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide, ChemElectroChem., 3, 581, 10.1002/celc.201500530

Blanchet, 2015, Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction, Energy Environ. Sci., 8, 3731, 10.1039/C5EE03088A

Herrero, 1983, End-product inhibition in anaerobic fermentations, Trends Biotechnol., 1, 49, 10.1016/0167-7799(83)90069-0

Agler, 2012, Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates, Energy Environ. Sci., 5, 8189, 10.1039/c2ee22101b

Ozadali, 1996, Fed-batch fermentation with and without on-line extraction for propionic and acetic acid production by Propionibacterium acidipropionici, Appl. Microbiol. Biotechnol., 44, 710

Xue, 2014, Integrated butanol recovery for an advanced biofuel: current state and prospects, Appl. Microbiol. Biotechnol., 98, 3463, 10.1007/s00253-014-5561-6

Ganigué, 2016, Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.00702

Patil, 2015, A logical data representation framework for electricity-driven bioproduction processes, Biotechnol. Adv., 33, 736, 10.1016/j.biotechadv.2015.03.002

Mardis, 2008, Next-generation DNA sequencing methods, Annu. Rev. Genomics Hum. Genet., 9, 387, 10.1146/annurev.genom.9.081307.164359

Takahashi, 2014, Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing, PLoS One, 9, 10.1371/journal.pone.0105592

Edgar, 2013, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, 10, 996, 10.1038/nmeth.2604

Hall, 1999, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 41, 95

Fontàs, 2000, 178, 131

Steinbusch, 2008, Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures, Water Res., 42, 4059, 10.1016/j.watres.2008.05.032

Vasudevan, 2014, Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes, Bioresour. Technol., 151, 378, 10.1016/j.biortech.2013.09.105

Puig, 2016, Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity, Bioresour. Technol.

Skidmore, 2013, Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency, Biomass Bioenergy, 55, 156, 10.1016/j.biombioe.2013.01.034

Kracke, 2015, Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems, Front. Microbiol., 6, 1, 10.3389/fmicb.2015.00575

McInerney, 1981, Basic principles of bioconversions in anaerobic digestion and methanogenesis, Biomass Convers. Process. Energy Fuels, 277, 10.1007/978-1-4757-0301-6_15

Peters, 1999, Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen, Curr. Microbiol., 38, 285, 10.1007/PL00006803

Yerushalmi, 1985, Effect of increased hydrogen partial pressure on the acetone-butanol fermentation by Clostridium acetobutylicum, Appl. Microbiol. Biotechnol., 22, 103, 10.1007/BF00250028

Richter, 2016, Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression, Energy Environ. Sci., 9, 2392, 10.1039/C6EE01108J

Sarkar, 2017, Acidogenesis driven by hydrogen partial pressure towards bioethanol production through fatty acids reduction, Energy, 118, 425, 10.1016/j.energy.2016.12.017

González-Cabaleiro, 2013, Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses, Energy Environ. Sci., 6, 3780, 10.1039/c3ee42754d

Ganigué, 2015, Conversion of sewage sludge to commodity chemicals via syngas fermentation, Water Sci. Technol., 72, 415, 10.2166/wst.2015.222

Van Eerten-jansen, 2012, Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives, Int. J. Energy Res., 36, 809, 10.1002/er.1954

Iijima, 2008, Modified multiplex PCR methods for comprehensive detection of Pectinatus and beer-spoilage cocci, Biosci. Biotechnol. Biochem., 72, 2764, 10.1271/bbb.80297

Juvonen, 2006, Megasphaera paucivorans sp. nov., Megasphaera sueciensis sp. nov. and Pectinatus haikarae sp. nov., isolated from brewery samples, and emended description of the genus Pectinatus, Int. J. Syst. Evol. Microbiol., 56, 695, 10.1099/ijs.0.63699-0

Butt, 1997, Direct electrochemistry of Megasphaera elsdenii iron hydrogenase. Definition of the enzyme's catalytic operating potential and quantitation of the catalytic behaviour over a continuous potential range, Eur. J. Biochem., 245, 116, 10.1111/j.1432-1033.1997.00116.x

Spirito, 2014, Chain elongation in anaerobic reactor microbiomes to recover resources from waste, Curr. Opin. Biotechnol., 27C, 115, 10.1016/j.copbio.2014.01.003

Marx, 2011, Genome sequence of the ruminal bacterium Megasphaera elsdenii, J. Bacteriol., 193, 5578, 10.1128/JB.05861-11

Schink, 1984, Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium, Arch. Microbiol., 137, 250, 10.1007/BF00414553

Cotter, 2009, Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells, Bioprocess Biosyst. Eng., 32, 369, 10.1007/s00449-008-0256-y

Raes, 2017, Continuous long-term bioelectrochemical chain elongation to butyrate, ChemElectroChem., 4, 1, 10.1002/celc.201600587

Daniell, 2012, Commercial Biomass Syngas Fermentation

Thauer, 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev., 41, 100, 10.1128/MMBR.41.1.100-180.1977

Agler, 2011, Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform, Trends Biotechnol., 29, 70, 10.1016/j.tibtech.2010.11.006

Angenent, 2016, Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals, Environ. Sci. Technol., 50, 2796, 10.1021/acs.est.5b04847