Microbial drug discovery: 80 years of progress

Journal of Antibiotics - Tập 62 Số 1 - Trang 5-16 - 2009
Arnold L. Demain1, Sergio Sánchez2
1Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ, USA
2Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México, DF, México

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fleming, A. On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10, 226–236 (1929).

Hölker, U., Höfer, M. & Lenz, J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64, 175–186 (2004).

Berdy, J. Bioactive microbial metabolites. A personal view. J. Antibiot. 58, 1–26 (2005).

Cragg, G. M., Newman, D. J. & Snader, K. M. Natural products in drug discovery and development. J. Nat. Prod. 60, 52–60 (1997).

Farnsworth, N. R., Akerele, O., Bingel, A. S., Soejarto, D. D. & Guo, Z. Medicinal plants in therapy. Bull. WHO 63, 965–981 (1985).

Patchett, A. A. Natural products and design: interrelated approaches in drug discovery. J. Med. Chem. 45, 5609–5616 (2002).

Cushman, D. W. & Ondetti, M. A. Design of angiotensin converting enzyme inhibitors. Nat. Med. 5, 1110–1112 (1999).

Overbye, K. M. & Barrett, J. F. Antibiotics: where did we go wrong? Drug Discov. Today 10, 45–52 (2005).

Topliss, J. G. et al. Natural and synthetic substances related to human health. Pure Appl. Chem. 74, 1957–1985 (2002).

Barber, M. S. The future of cephalosporins business. Chim. Oggi. 19, 9–13 (2001).

Lederberg, J. Infectious history. Science 288, 287–293 (2000).

Rayl, A. J. S. Oceans: medicine chests of the future? Scientist 13, 1–5 (1999).

Robinson, W. E., Reinecke, M. G., Abdel-Malek, S., Jia, O. & Chow, A. Inhibitors of HIV-1 replication that inhibit HIV integrase. Proc. Natl Acad. Sci. USA 93, 6326–6331 (1996).

Cragg, G. M. & Newman, D. J. Medicinals for the millennia. The historical record. Ann. NY Acad. Sci. 953a, 3–25 (2001).

Yang, S. S., Cragg, G. M., Newman, D. J. & Bader, J. P. Natural products based anti-HIV drug discovery and development facilitated by the NCI developmental therapeutics program. J. Nat. Prod. 64, 265–277 (2001).

Hancock, R. E. W. The end of an era? Nat. Rev. Drug Discov. 6, 26 (2007).

Katz, M. L., Mueller, L. V., Polyakov, M. & Weinstock, S. F. Where have all the antibiotic patents gone? Nat. Biotechnol. 24, 1529–1531 (2006).

Balaban, N. & Dell’Acqua, G. Barriers on the road to new antibiotics. Scientist 19, 42–43 (2005).

Levin, B. R. & Bonten, M. J. M. Cycling may be bad for your health. Proc. Natl Acad. Sci. USA 101, 13101–13102 (2004).

Ecker, D. J. et al. The Microbial Rosetta Stone Database: a compilation of global and emerging infectious microorganisms and bioterrorist threat agents. BMC Microbiol. 5, 19 (2005).

Ryan, K. J. & Ray, C. G. in Sherris Medical Microbiology 4th edn, 434–437 (McGraw Hill, New York, 2004).

OECD Forum. Health of Nations: Combating Infectious Diseases. Organisation for Economic Co-operation and Development. Centre de Conférences Internationales, 19 avenue Kléber 75116 Paris, France. 12–13 May 2004.

Morse, S. S. The public health threat of emerging viral disease. J. Nutr. 127, 951S–957S (1997).

Coates, A., Hu, Y., Bax, R. & Page, C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 1, 895–910 (2002).

Moellering, R. C. Jr Problems with antimicrobial resistance in Gram-positive cocci. Clin. Infect Dis. 26, 1177–1178 (1998).

Bacque, E., Barriere, J. C. & Berthand, N. Recent progress in the field of antibacterial pristinamycins. Curr. Med. Chem. Anti-infect. Agents 4, 185–217 (2005).

Sum, P. E., Sum, F. W. & Projan, S. W. Recent developments in tetracycline antibiotics. Curr. Pharm. Des. 4, 119–132 (1998).

Sum, P. E. Case studies in current drug development: ‘glycylcyclines’. Curr. Opin. Chem. Biol. 10, 374–379 (2006).

Tally, F. P. & DeBruin, M. F. Development of daptomycin for Gram-positive infections. J. Antimicrob. Chemother. 46, 523–526 (2000).

Raja, A., LaBonte, J., Lebbos, J. & Kirkpatrick, P. Daptomycin. Nat. Rev. Drug Discov. 2, 943–944 (2003).

Eisenstein, B. I. Lipopeptides, focusing on daptomycin, for the treatment of Gram-positive infections. Expert Opin. Investig. Drugs 13, 1159–1169 (2004).

LaPlante, K. L. & Rybak, M. J. Daptomycin—a novel antibiotic against Gram-positive pathogens. Expert Opin. Pharmacother. 5, 2321–2331 (2004).

Leclercq, R. Overcoming antimicrobial resistance: profile of a new ketolide antibacterial, telithromycin. J. Antimicrob. Chemother. 48, 9–23 (2001).

Jensen, S. E. & Paradkar, A. S. Biosynthesis and molecular genetics of clavulanic acid. Antonie van Leeuwenhoek 75, 125–133 (1999).

Singh, N. Invasive aspergillosis in organ transplant recipients: new issues in epidemiologic characteristics, diagnosis, and management. Med. Mycol. 43 (suppl. 1), S267–S270 (2005).

Enoch, D. A., Ludlam, H. A. & Brown, N. M. Invasive fungal infections: a review of epidemiology and management options. J. Med. Microbiol. 55, 809–818 (2006).

Alexander, B. D. & Perfect, J. R. Antifungal resistance trends towards the year 2000. Implications for therapy and new approaches. Drugs 54, 657–678 (1997).

Hoang, A. Caspofungin acetate: an antifungal agent. Am. J. Health Syst. Pharm. 58, 1206–1217 (2001).

Georgopapadakou, N. H. Antifungals targeted to cell wall: focus on β-1,3-glucan synthase. Expert Opin. Invest. Drugs 10, 269–280 (2001).

Ikeda, F. et al. Role of micafungin in the antifungal armamentarium. Curr. Med. Chem: 14, 1263–1275 (2007).

Kwon, D. S. & Mylonakis, E. Posaconazole: a new broad-spectrum antifungal agent. Expert Opin. Pharmacother. 8, 1167–1178 (2007).

Cardenas, M. E., Sanfridson, A., Cutler, N. S. & Heitman, J. Signal-transduction cascades as targets for therapeutic intervention by natural products. Trends Biotechnol. 16, 427–433 (1998).

Kremer, L., Douglas, J. D., Baulard, A. R., Morehouse, C. & Guy, M. R. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem. 275, 16857–16864 (2000).

Verdine, G. L. The combinatorial chemistry of nature. Nature 384, 11–13 (1996).

Schwartsmann, G. et al. Anticancer drug discovery and development throughout the world. J. Clin. Oncol. 20 18S, 47s–59s (2002).

Waksman, S. A. & Woodruff, H. B. Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J. Bacteriol. 42, 231–249 (1941).

Minotti, G., Menna, P., Salvatorelli, E., Cairo, G. & Gianni, L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185–229 (2004).

Umezawa, H., Maeda, K., Takeuchui, T. & Okami, Y. New antibiotics, bleomycin A and B. J. Antibiot. 19A, 200–209 (1966).

Schein, P. S., Macdonald, J. S., Hoth, D. F. & Wooley, P. V. The FAM (5-fluorouracil, adriamycin, mitomycin C) and SMF (streptozotocin, mitomycin C, 5-fluorouracil) chemotherapy regimens. in Mitomycin C: Current Status and New Developments (eds Carter, S.K. & Crooke, S.T.) 133–143 (Academic Press, New York, 1979).

Paz, M. M., Kumar, G. S., Glover, M., Waring, M. J. & Tomasz, M. Mitomycin dimers: polyfunctional cross-linkers of DNA. J. Med. Chem. 47, 3308–3319 (2004).

Fernández, E. et al. Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J. Bacteriol. 180, 4929–4937 (1998).

Wang, Z. & Gleichmann, H. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 47, 50–56 (1998).

Showalter, D. H. et al. Improved production of pentostatin and identification of fermentation cometabolites. J. Antibiot. 45, 1914–1918 (1992).

Dang, N. H. et al. Pentostatin in T-non-Hodgkin's lymphomas: efficacy and effect on CD26+ T lymphocytes. Oncol. Rep. 10, 1513–1518 (2003).

Walker, S., Landovitz, R., Ding, W. D., Ellestad, G. A. & Kahne, D. Cleavage behavior of calicheamicin gamma 1 and calicheamicin T. Proc. Natl Acad. Sci. USA 89, 4608–4612 (1992).

Bross, P. F. et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 7, 1490–1496 (2001).

Zhao, K., Zhou, D., Ping, W. & Ge, J. Study on the preparation and regeneration of protoplast from taxol-producing fungus Nodulisporium sylviforme. Nat. Sci 2, 52–59 (2004).

Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).

Gerth, K., Bedorf, N. & Hofle, G. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria): production, physico-chemical and biological properties. J. Antibiot. 49, 560–563 (1996).

Bollag, D. M., McQueney, P. A. & Zhu, J. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55, 2325–2333 (1995).

Kowalski, R. J., Giannakakou, P. & Hamel, E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol). J. Biol. Chem. 272, 2534–2541 (1997).

Goodin, S., Kane, M. P. & Rubin, E. H. Epothilones: mechanism of action and biologic activity. J. Clin. Oncol. 22, 2015–2025 (2004).

Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J. & Thun, M. J. Cancer statistics, 2007. CA Cancer J. Clin. 57, 43–66 (2007).

Einhorn, L. H. Curing metastatic testicular cancer. Proc. Natl Acad. Sci. USA 99, 4592–4595 (2002).

Feldman, D. R., Bosl, G. J., Sheinfeld, J. & Motzer, R. J. Medical treatment of advanced testicular cancer. J. Am. Med. Assoc. 299, 672–684 (2008).

Culine, S. et al. Refining the optimal chemotherapy regimen for good-risk metastatic nonseminomatous germ-cell tumors: a randomized trial of the Genito-Urinary Group of the French Federation of Cancer Centers (GETUG T93BP). Ann. Oncol. 18, 917–924 (2007).

Umezawa, H. Enzyme Inhibitors of Microbial Origin (University of Tokyo Press, Tokyo, Japan, 1972, ).

Truscheit, E., Frommer, W., Junge, B., Müller, L., Schmidt, D. D. & Wingender, W. Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angew. Chem. Intl Ed. Engl. 20, 744–761 (1981).

Boivin, M., Flourie, B., Rizza, R. A., Go, V. L. & DiMagno, E. P. Gastrointestinal and metabolic effects of amylase inhibition in diabetics. Gastroenterology 94, 387–394 (1988).

Imada, C. Enzyme inhibitors of marine microbial origin with pharmaceutical importance. Mar. Biotechnol. (NY) 6, 193–198 (2004).

Díaz, E., Aguirre, C. & Gotteland, M. Effect of an α- amylase inhibitor on body weight reduction in obese women. Rev. Chil. Nutr. 31, 306–317 (2004).

Boivin, M., Zinsmeister, A. R., Go, V. L. & DiMagno, E. P. Effect of a purified amylase inhibitor on carbohydrate metabolism after a mixed meal in healthy humans. Mayo Clin. Proc. 62, 249–255 (1987).

Banks, B. J., Haxell, M. A., Lunn, G., Pacey, M. S. & Roberts, L. R. Treatment of rumen acidosis with alpha-amylase inhibitors European Patent EP1157696 (2006).

Arai, M., Oouchi, N. & Murao, S. Inhibitory properties of an α-amylase inhibitor, paim, from Streptomyces corchorushii. Agric. Biol. Chem. 49, 987–991 (1985).

Kangouri, K., Namiki, S., Nagate, T., Sugita, K. & Ōmura, S. Novel amylase inhibitors United States Patent 4197292 (1980).

Weibel, E. K., Hadvary, P., Hochuli, E., Kupfer, E. & Lengsfeld, H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. J. Antibiot. 40, 1081–1085 (1987).

Borges, F., Fernandes, E. & Roleira, F. Progress towards the discovery of xanthine oxidase inhibitors. Curr. Med. Chem. 9, 195–217 (2002).

Izumida, H., Miki, W., Sano, H. & Endo, M. Agar plate method, a new assay for chitinase inhibitors using a chitin-degrading bacterium. J. Marine Biotechnol. 2, 163–166 (1995).

Paterson, R. R. M. Fungal enzyme inhibitors as pharmaceuticals, toxins and scourge of PCR. Curr. Enzyme Inhib. 4, 46–59 (2008).

Borel, J. F. History of the discovery of cyclosporin and of its early pharmacological development. Wien. Klin. Wochenschr. 114, 433–437 (2002).

Aggarwala, D., Fernandez, M. L. & Solimanb, G. A. Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs. Metabolism 55, 794–802 (2006).

Ehninger, D. et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat. Med. 14, 843–848 (2008).

Eisen, H. J. et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N. Eng. J. Med. 349, 847–858 (2003).

Huang, S. & Houghton, P. J. Targeting mTOR signaling for cancer therapy. Curr. Opin. Pharmacol. 3, 371–377 (2003).

Dancey, J. E. Therapeutic targets: MTOR and related pathways. Cancer Biol. Ther. 5, 1065–1073 (2006).

Chen, Y.-J. Targeted mTOR in human gynecologic cancers. J. Cancer Mol. 3, 101–106 (2007).

Kino, T. et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. 1. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot. 40, 1249–1255 (1987).

Jain, A. B. et al. Correlation of rejection episodes with FK 506 dosage, FK 506 level and steroid following primary orthotopic liver transplant. Transplant Proc. 23, 3023–3025 (1991).

Nagano, J. et al. Use of tacrolimus, a potent antifibrotic agent, in bleomycin-induced lung fibrosis. Eur. Respir. J. 27, 460–469 (2006).

Nicholls, S. J. et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. J. Am. Med. Assoc. 297, 499–508 (2007).

Alberts, A. W. et al. Mevinolin, a highly potent competitive inhibitor of hydroxylmethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl Acad. Sci. USA 77, 3957–3961 (1980).

Serizawa, N. & Matsuoka, T. A two-component-type cytochrome P-450 monooxygenase system in a prokaryote that catalyzes hydroxylation of ML-236B to pravastatin, a tissue-selective inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochim. Biophys. Acta. 1084, 35–40 (1991).

Peng, Y. & Demain, A. L. A new hydroxylase system in Actinomadura sp. cells converting compactin to pravastatin. J. Ind. Microbiol. Biotechnol. 20, 373–375 (1998).

Alarcon, J., Aguila, S., Arancibia-Avila, P., Fuentes, O., Zamorano-Ponce, E. & Hernandez, M. Production and purification of statins from Pleurotus ostreatus (Basidiomycetes) strains. Z. Naturforsch. 58, 62–64 (2003).

Kirst, H. A. et al. Evaluation and development of spinosyns to control ectoparasites on cattle and sheep. Curr. Top. Med. Chem. 2, 675–699 (2002).

Gaisser, S. et al. Engineered biosynthesis of novel spinosyns bearing altered deoxyhexose substituents. Chem. Commun. 21, 618–619 (2002).

Hahn, D. R., Gustafson, G., Waldron, C., Bullard, B., Jackson, J. D. & Mitchell, J. Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes. J. Ind. Microbiol. Biotechnol. 33, 94–104 (2006).

Li, Y., Sun, Z., Zhuang, X., Xu, L., Chen, S. & Li, M. Research progress on microbial herbicides. Crop Prot. 22, 247–252 (2003).

Randall, J. M. Weed control for the preservation of biological diversity. Weed Technol. 10, 370–383 (1996).

Kline, W. N. & Duquesnel, J. G. Control of problem vegetation: a key to ecosystem management. Down Earth 51, 20–28 (1996).

Bayer, E. et al. Metabolic products of microorganisms. 98. Phosphinothricin and phosphinothricyl-alanyl-analine. Helv. Chim. Acta. 55, 224–239 (1972).

Kondo, Y. et al. Studies on a new antibiotic, SF-1293. I. Isolation and physico-chemical and biological characterization of SF-1293 substances. Sci. Rep. Meiji Seika 13, 34–41 (1973).

Schwartz, D., Berger, S., Heinzelmann, E., Muschko, K., Welzel, K. & Wohlleben, W. Biosynthetic gene cluster of the herbicide phosphinothricin tripeptide from Streptomyces viridochromogenes Tu494. Appl. Environ. Microbiol. 70, 7093–7102 (2004).

Stapley, E. O. Avermectins, antiparasitic lactones produced by Streptomyces avermitilis isolated from a soil in Japan. in Trends in Antibiotic Research (eds Umezawa, H., Demain, A.L., Hata, R. & Hutchinson, C.R.) 154–170 (Japan Antibiotic Research Association, Tokyo, Japan, 1982).

Tooth, J. A., Davis, M. W. & Avery, L. A. avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J. 16, 5867–5879 (1997).

Shikiya, K. et al. Efficacy of ivermectin against Strongyloides stercoralis in humans. Intern. Med. 31, 310–312 (1992).

Goudie, A. C. et al. Doramectin-A potent novel endectocide. Vet. Parasitol. 49, 5–15 (1993).

Michael, B., Meinke, P. T. & Shoop, W. L. Comparison of ivermectin, doramectin, selamectin, and eleven intermediates in a nematode larval development assay. J. Parasitol. 87, 692–696 (2002).

Mishima, H., Ide, J., Muramatsu, S. & Ono, M. Milbemycins, a new family of macrolide antibiotics. Structure determination of milbemycins D, E, F, G, H, J and K. J. Antibiot. 36, 980–990 (1983).

Westley, J. W. Polyether antibiotics: versatile carboxylic acid ionophores produced by Streptomyces. Adv. Appl. Microbiol. 22, 177–223 (1977).

Matabudul, D. K., Lumley, I. D. & Points, J. S. The determination of 5 anticoccidial drugs (nicarbazin, lasalocid, monensin, salinomycin and narasin) in animal livers and eggs by liquid chromatography linked with tandem mass spectrometry (LC-MS-MS). Analyst 127, 760–768 (2002).

Page, S. W. The Role of Enteric Antibiotics in Livestock Production (National Association for Crop Production and Animal Health, Avcare, Australia, 2003).

Gaskins, H. R., Collier, C. T. & Anderson, D. B. Antibiotics as growth promotants: mode of action. Anim. Biotechnol. 13, 29–42 (2002).

Animal Health Institute USA. Antibiotic resistance back in the news. AHI Q 19, 1–4 (1998).

Nelson, R. Antibiotic development pipeline runs dry. Lancet 362, 1726–1727 (2003).

Shryock, T. R. The future of anti-infective products in animal health. Nat. Rev. Microbiol. 2, 425–430 (2004).

Casewell, M., Friis, C., Marco, E., McMullin, P. & Phillips, I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 52, 159–161 (2003).

Funabashi, Y. et al. Bioactive metabolites of EM574 and EM523, erythromycin derivatives having strong gastrointestinal motor stimulating activity. J. Antibiot. 49, 794–801 (1996).

Bradley, C. Erythromycin as a gastrointestinal prokinetic agent. Intensive Crit. Care Nurs. 17, 117–119 (2001).

McCallum, R. W. & Cynshi, O. Clinical trial: effect of mitemcinal (a motilin agonist) on gastric emptying in patients with gastroparesis—a randomized, multicentre, placebo-controlled study. Aliment. Pharmacol. Ther. 26, 1121–1130 (2007).

Livermore, D. M. The need for new antibiotics. Clin. Microbiol. Infect 10, 1–9 (2004).

Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

Colwell, R. R. Fulfilling the promise of biotechnology. Biotechnol. Adv. 20, 215–228 (2002).

Gaudilliere, B., Bernardelli, P. & Berna, P. in Annual Reports in Medicinal Chemistry Vol. 36 (ed. Doherty, A.M.) 293–318 (Academic Press, San Diego, USA, 2001).

Clardy, J., Fischbach, M. A. & Walsh, C. T. New antibiotics from bacterial natural products. Nat. Biotechnol. 24, 1541–1550 (2006).