Microbial desalination cell with sulfonated sodium poly(ether ether ketone) as cation exchange membranes for enhancing power generation and salt reduction

Bioelectrochemistry - Tập 121 - Trang 176-184 - 2018
Francisco Lopez Moruno1,2, Juan E. Rubio3, Plamen Atanassov1, José M. Cerrato2, Christopher G. Arges3, Carlo Santoro4
1Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
2Department of Civil Engineering, University of New Mexico, Albuquerque, NM, USA
3Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
4Bristol BioEnergy Center, Bristol Robotics Laboratory, University of West England, Bristol, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alcamo, 2003, Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions, Hydrol. Sci. J., 48, 339, 10.1623/hysj.48.3.339.45278

Oki, 2007, Current situation and future perspectives on global hydrologic cycles, water balances, and world freshwater resources, J. Geogr., 116, 31, 10.5026/jgeography.116.31

Fritzmann, 2007, State-of-the-art of reverse osmosis desalination, Desalination, 216, 1, 10.1016/j.desal.2006.12.009

Elimelech, 2011, The future of seawater desalination: energy, technology, and the environment, Science, 333, 712, 10.1126/science.1200488

Avlonitis, 2003, Energy consumption and membrane replacement cost for seawater RO desalination plants, Desalination, 157, 151, 10.1016/S0011-9164(03)00395-3

Ghaffour, 2013, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309, 197, 10.1016/j.desal.2012.10.015

Lee, 2011, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci., 370, 1, 10.1016/j.memsci.2010.12.036

Hong, 2015, Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review, J. Membr. Sci., 486, 71, 10.1016/j.memsci.2015.02.039

Mohammad, 2015, Nanofiltration membranes review: recent advances and future prospects, Desalination, 356, 226, 10.1016/j.desal.2014.10.043

Pangarkar, 2014, Status of membrane distillation for water and wastewater treatment—a review, Desalin. Water Treat., 52, 5199, 10.1080/19443994.2013.808422

Khayet, 2013, Solar desalination by membrane distillation: dispersion in energy consumption analysis and water production costs (a review), Desalination, 308, 89, 10.1016/j.desal.2012.07.010

Saeed, 2015, Microbial desalination cell technology: a review and a case study, Desalination, 359, 1, 10.1016/j.desal.2014.12.024

Brastad, 2013, Water softening using microbial desalination cell technology, Desalination, 309, 32, 10.1016/j.desal.2012.09.015

Chen, 2011, Stacked microbial desalination cells to enhance water desalination efficiency, Environ. Sci. Technol., 45, 2465, 10.1021/es103406m

Santoro, 2017, Microbial fuel cells: from fundamentals to applications. A review, J. Power Sources, 356, 225, 10.1016/j.jpowsour.2017.03.109

Zhang, 2009, Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell, Electrochem. Commun., 11, 2177, 10.1016/j.elecom.2009.09.024

Borjas, 2017, Strategies for merging microbial fuel cell technologies in water desalination processes: start-up protocol and desalination efficiency assessment, J. Power Sources, 356, 519, 10.1016/j.jpowsour.2017.02.052

Rabaey, 2003, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531, 10.1023/A:1025484009367

Cao, 2009, A new method for water desalination using microbial desalination cells, Environ. Sci. Technol., 43, 7148, 10.1021/es901950j

Carmalin Sophia, 2016, Microbial desalination cell technology: contribution to sustainable waste water treatment process, current status and future applications, J. Environmental Chemical Engineering, 4, 3468, 10.1016/j.jece.2016.07.024

Wang, 2013, A comprehensive review of microbial electrochemical systems as a platform technology, Biotechnol. Adv., 31, 1796, 10.1016/j.biotechadv.2013.10.001

Merle, 2011, Anion exchange membranes for alkaline fuel cells: a review, J. Membr. Sci., 377, 1, 10.1016/j.memsci.2011.04.043

Varcoe, 2014, Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci., 7, 3135, 10.1039/C4EE01303D

Santoro, 2017, A family of Fe-N-C oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: relationships between surface chemistry and performances, Appl. Catal., B, 205, 24, 10.1016/j.apcatb.2016.12.013

Santoro, 2017, Microbial desalination cells with efficient platinum group metal-free cathode catalysts, ChemElectroChem, 4, 3322, 10.1002/celc.201700626

Kodali, 2017, Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells, J. Power Sources, 366, 18, 10.1016/j.jpowsour.2017.08.110

Kim, 2013, Microbial desalination cells for energy production and desalination, Desalination, 308, 122, 10.1016/j.desal.2012.07.022

Mehanna, 2010, Using microbial desalination cells to reduce water salinity prior to reverse osmosis, Energy Environ. Sci., 3, 1114, 10.1039/c002307h

Zhang, 2013, Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell, J. Membr. Sci., 441, 18, 10.1016/j.memsci.2013.04.005

Yuan, 2012, Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water, Bioresour. Technol., 110, 735, 10.1016/j.biortech.2012.01.137

Zhang, 2012, Energy production, use and saving in a bioelectrochemical desalination system, RSC Adv., 2, 10673, 10.1039/c2ra21779a

Santoro, 2017, Supercapacitive microbial desalination cells: new class of power generating devices for reduction of salinity content, Appl. Energy, 208, 25, 10.1016/j.apenergy.2017.10.056

Houghton, 2016, Supercapacitive microbial fuel cell: characterization and analysis for improved charge storage/delivery performance, Bioresour. Technol., 218, 552, 10.1016/j.biortech.2016.06.105

Luo, 2011, Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells, Environ. Sci. Technol., 45, 340, 10.1021/es1022202

Dekker, 2009, Analysis and improvement of a scaled-up and stacked microbial fuel cell, Environ. Sci. Technol., 43, 9038, 10.1021/es901939r

Jiang, 2011, A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment, Int. J. Hydrog. Energy, 36, 876, 10.1016/j.ijhydene.2010.08.074

Hiegemann, 2016, An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant, Bioresour. Technol., 218, 115, 10.1016/j.biortech.2016.06.052

Wu, 2016, A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment, Water Res., 98, 396, 10.1016/j.watres.2016.04.043

Feng, 2014, A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment, Bioresour. Technol., 156, 132, 10.1016/j.biortech.2013.12.104

Cusick, 2011, Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater, Appl. Microbiol. Biotechnol., 89, 2053, 10.1007/s00253-011-3130-9

Zhang, 2015, Scaling up microbial desalination cell system with a post-aerobic process for simultaneous wastewater treatment and seawater desalination, Desalination, 360, 28, 10.1016/j.desal.2015.01.009

Luo, 2012, Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination, Bioresour. Technol., 105, 60, 10.1016/j.biortech.2011.11.098

Lopez Moruno, 2018, Investigation of patterned and non-patterned poly(2,6-dimethyl 1,4-phenylene) oxide based anion exchange membranes for enhanced desalination and power generation in a microbial desalination cell, Solid State Ionics, 341, 141, 10.1016/j.ssi.2017.11.004

Santoro, 2016, Bilirubin oxidase based enzymatic air-breathing cathode: operation under pristine and contaminated conditions, Bioelectrochemistry, 108, 1, 10.1016/j.bioelechem.2015.10.005

Arges, 2013, Best practices for investigating anion exchange membrane suitability for alkaline electrochemical devices: case study using quaternary ammonium poly(2,6-dimethyl 1,4-phenylene)oxide anion exchange membranes, J. Electrochem. Soc., 160, F1258, 10.1149/2.049311jes

Arges, 2015, Mechanically stable poly (arylene ether) anion exchange membranes prepared from commercially available polymers for alkaline electrochemical devices, J. Electrochem. Soc., 162, F686, 10.1149/2.0361507jes

Soavi, 2016, Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems, J. Power Sources, 326, 717, 10.1016/j.jpowsour.2016.04.131

Kodali, 2017, High performance platinum group metal-free cathode catalysts for microbial fuel cell (MFC), J. Electrochem. Soc., 164, H3041, 10.1149/2.0061703jes

Sambandam, 2010, Influence of binder properties on kinetic and transport processes in polymer electrolyte fuel cell electrodes, Phys.Chem. Chem.Phys., 12, 6140, 10.1039/b921916a

Zhang, 2017, Patterning polymer electrolyte membrane for fuel cell and electrolysis applications, ECS Trans., 77, 1325, 10.1149/07711.1325ecst

Bauer, 1990, Anion exchange membranes with improved alkaline stability, Desalination, 79, 125, 10.1016/0011-9164(90)85002-R

CMI-7000 Cation exchange membranes technical specifications, in, Membranes International Inc..

Jeon, 2015, Interface-designed membranes with shape-controlled patterns for high-performance polymer electrolyte membrane fuel cells, Sci. Rep., 5, 10.1038/srep16394

Parrondo, 2016, Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments, Phys.Chem. Chem.Phys., 18, 19705, 10.1039/C6CP01978A

Zhang, 2017, Detection of reactive oxygen species in anion exchange membrane fuel cells using in situ fluorescence spectroscopy, ChemSusChem, 10, 3056, 10.1002/cssc.201700760

Prabhakaran, 2012, Investigation of polymer electrolyte membrane chemical degradation and degradation mitigation using in situ fluorescence spectroscopy, Proc. Natl. Acad. Sci. U. S. A., 109, 1029, 10.1073/pnas.1114672109

Prabhakaran, 2013, In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell, Phys.Chem. Chem.Phys., 15, 18965, 10.1039/c3cp53919a

Gu, 2010, Quaternary phosphonium-based polymers as hydroxide exchange membranes, ChemSusChem, 3, 555, 10.1002/cssc.201000074

Forrestal, 2012, Microbial desalination cell with capacitive adsorption for ion migration control, Bioresour. Technol., 120, 332, 10.1016/j.biortech.2012.06.044

ElMekawy, 2014, The near-future integration of microbial desalination cells with reverse osmosis technology, Energy Environ. Sci., 7, 3921, 10.1039/C4EE02208D

Strathmann, 2013, Ion-exchange membranes in the chemical process industry, Ind. Eng. Chem. Res., 52, 10364, 10.1021/ie4002102

Wood, 2010, Production of ultrapure water by continuous electrodeionization, Desalination, 250, 973, 10.1016/j.desal.2009.09.084

Datta, 2013, Electrochemical CO2 capture using resin-wafer electrodeionization, Ind. Eng. Chem. Res., 52, 15177, 10.1021/ie402538d

Larrosa-Guerrero, 2010, Effect of temperature on the performance of microbial fuel cells, Fuel, 89, 3985, 10.1016/j.fuel.2010.06.025

Behera, 2011, Effect of operating temperature on performance of microbial fuel cell, Water Sci. Technol., 64, 917, 10.2166/wst.2011.704

Yang, 2016, Immobilization of a metal–nitrogen–carbon catalyst on activated carbon with enhanced cathode performance in microbial fuel cells, ChemSusChem, 9, 2226, 10.1002/cssc.201600573

Kodali, 2017, Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co-and Ni-containing platinum group metal-free catalysts, Electrochim. Acta, 231, 115, 10.1016/j.electacta.2017.02.033