Kiểm soát vi sinh vật đối với sự giải phóng đồng thời kim loại nặng và chất dinh dưỡng trong một hồ chứa có phân tầng theo mùa

Springer Science and Business Media LLC - Tập 29 - Trang 1937-1948 - 2021
Xuecheng Zhang1, Shiyuan Ding1,2, Hong Lv1, Gaoyang Cui1,3, Mengdi Yang1, Yiyao Wang1, Tianhao Guan1, Xiao-Dong Li1
1Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
2State Key Laboratory of Environmental Geochemistry, Guiyang, China
3The college of Environment and Planning, Henan University, Kaifeng, China ∗

Tóm tắt

Sự phú dưỡng của các hồ chứa có thể thay đổi các thông số lý hóa của nước, từ đó ảnh hưởng đến sự di chuyển và biến đổi của kim loại nặng. Hiện tại, có rất ít nghiên cứu về các cơ chế kết hợp giữa các chất dinh dưỡng và kim loại nặng, đặc biệt là giữa kim loại nặng trong các hạt lơ lửng. Trong bài báo này, các đặc điểm phân bố theo không gian và thời gian của kim loại nặng hòa tan và kim loại nặng trong các hạt lơ lửng đã được phân tích trong một hồ chứa có phân tầng theo mùa. Kết hợp với quá trình địa sinh khối nito và phốt pho, các cơ chế kết hợp giữa kim loại nặng và các chất dinh dưỡng đã được thảo luận. Kết quả cho thấy hồ chứa Aha có sự phân tầng nhiệt độ và oxy hòa tan vào tháng Tư và tháng Bảy. Sự giảm thiểu và hòa tan của oxit/hydroxit sắt và mangan cùng với sự tái lơ lửng của trầm tích có thể dẫn đến sự gia tăng đồng thời nồng độ của các chất dinh dưỡng, kim loại nặng hòa tan và kim loại nặng trong các hạt lơ lửng ở tầng dưới hồ vào tháng Bảy và tháng Mười. Trong sự hiện diện của vi khuẩn khử sắt không phân giải (DRIB), sự hòa tan của photpho gắn với sắt trong trầm tích và vật chất lơ lửng (SPM) có thể dẫn đến việc giải phóng đồng thời sắt và photpho vào nước. Sự hòa tan của sulfide kim loại trong trầm tích và SPM dưới tác động của vi khuẩn khử nitrat nhằm tạo ra amoniac (DNRA) có thể dẫn đến việc giải phóng đồng thời nitơ amoniac và kim loại nặng vào nước. Do sự kết hợp giữa nitơ và photpho với kim loại nặng, hồ chứa có phân tầng theo mùa có thể đối mặt với nguy cơ ô nhiễm đồng thời theo chu kỳ của phú dưỡng và kim loại nặng vào mùa hè và mùa thu. Nghiên cứu này cung cấp hỗ trợ lý thuyết cho việc xử lý ô nhiễm kết hợp giữa kim loại nặng và phú dưỡng trong các khu vực karst.

Từ khóa

#kim loại nặng #phú dưỡng #hồ chứa #vi sinh vật #phân tầng #trầm tích

Tài liệu tham khảo

Ansari AA, Gill SS, Lanza GR, Rast W (2014) Eutrophication: causes, consequences and control. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7814-6 Ayele HS, Atlabachew M (2021) Review of characterization, factors, impacts, and solutions of lake eutrophication: lesson for lake Tana, Ethiopia. Environ Sci Pollut Res 28:14233–14252. https://doi.org/10.1007/s11356-020-12081-4 Baken S, Verbeeck M, Verheyen D, Diels J, Smolders E (2015) Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches. Water Res 71:160–170. https://doi.org/10.1016/j.watres.2015.01.008 Borch T, Masue Y, Kukkadapu RK, Fendorf S (2007) Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environ Sci Technol 41:166–172. https://doi.org/10.1021/es060695p Chen Q, Chen JG, Wang JF, Guo JY, Jin ZX, Yu PP, Ma ZZ (2019) In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China. Sci Total Environ 666:39–45. https://doi.org/10.1016/j.scitotenv.2019.02.194 Deng F, Hou L, Liu M, Zheng Y, Yin G, Li X, Lin X, Chen F, Gao J, Jiang X (2015) Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary. J Geophys Res-Biogeo 120:1521–1531. https://doi.org/10.1002/2015jg003007 Ding WH, Wu TF, Qin BQ, Lin YT, Wang H (2018) Features and impacts of currents and waves on sediment resuspension in a large shallow lake in China. Environ Sci Pollut Res 25:36341–36354. https://doi.org/10.1007/s11356-018-3471-3 Domangue RJ, Mortazavi B (2018) Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary. Environ Pollut 238:599–606. https://doi.org/10.1016/j.envpol.2018.03.033 Du HB, Chen ZN, Mao GZ, Chen L, Crittenden J, Li RYM, Chai LH (2019) Evaluation of eutrophication in freshwater lakes: a new non-equilibrium statistical approach. Ecol Indic 102:686–692. https://doi.org/10.1016/j.ecolind.2019.03.032 Feng C, Guo X, Yin S, Tian C, Li Y, Shen Z (2017) Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary. Chemosphere 185:717–725. https://doi.org/10.1016/j.chemosphere.2017.07.075 Fernandes LL, Kessarkar PM, Rao VP, Suja S, Parthiban G, Kurian S (2019) Seasonal distribution of trace metals in suspended particulate and bottom sediments of four microtidal river estuaries, west coast of India. Hydrol Sci J 64:1519–1534. https://doi.org/10.1080/02626667.2019.1655147 Fielding JJ, Croudace IW, Kemp AES, Pearce RB, Cotterill CJ, Langdon P, Avery R (2020) Tracing lake pollution, eutrophication and partial recovery from the sediments of Windermere, UK, using geochemistry and sediment microfabrics. Sci Total Environ 722:137745. https://doi.org/10.1016/j.scitotenv.2020.137745 Gao YL, Liang T, Tian SH, Wang LQ, Holm PE, Hansen HCB (2016) High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments. Environ Pollut 219:466–474. https://doi.org/10.1016/j.envpol.2016.05.053 Gao Y, Fang L, Xiang QQ, Wang D, Ding LY, Ding CZ, Chen LQ (2020) Ecological risk assessment of heavy metals in fish from the Dianchi Lake, China using the integrated biomarker response approach. Environ Sci Pollut Res 27:45712–45721. https://doi.org/10.1007/s11356-020-10434-7 Giles CD, Isles PDF, Manley T, Xu Y, Druschel GK, Schroth AW (2016) The mobility of phosphorus, iron, and manganese through the sediment-water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions. Biogeochemistry 127:15–34. https://doi.org/10.1007/s10533-015-0144-x He TR, Zhu YZ, Yin DL, Luo GJ, An YL, Yan HY, Qian XL (2015) The impact of acid mine drainage on the methylmercury cycling at the sediment-water interface in Aha Reservoir, Guizhou, China. Environ Sci Pollut Res 22:5124–5138. https://doi.org/10.1007/s11356-014-3864-x Huang W, Cao X, Huang DY, Liu WL, Liu X, Zhang JB (2019) Phosphorus characteristics and microbial community in the sediment-water-algal system during algal growth. Environ Sci Pollut Res 26:31414–31421. https://doi.org/10.1007/s11356-019-06284-7 Jaiswal D, Pandey J (2019a) Carbon dioxide emission coupled extracellular enzyme activity at land-water interface predict C-eutrophication and heavy metal contamination in Ganga River, India. Ecol Indic 99:349–364. https://doi.org/10.1016/j.ecolind.2018.12.046 Jaiswal D, Pandey J (2019b) An ecological response index for simultaneous prediction of eutrophication and metal pollution in large rivers. Water Res 161:423–438. https://doi.org/10.1016/j.watres.2019.06.030 Ji Z, Zhang H, Zhang Y, Chen T, Long Z, Li M, Pei Y (2019) Distribution, ecological risk and source identification of heavy metals in sediments from the Baiyangdian Lake Northern China. Chemosphere 237:124425. https://doi.org/10.1016/j.chemosphere.2019.124425 Jiang X, Gao G, Zhang L, Tang X, Shao K, Hu Y, Cai J (2020) Role of algal accumulations on the partitioning between N2 production and dissimilatory nitrate reduction to ammonium in eutrophic lakes. Water Res 183:116075–116075. https://doi.org/10.1016/j.watres.2020.116075 Kijowska-Strugala M, Wiejaczka L, Kozlowski R (2016) Influence of reservoirs on the concentration of nutrients in the water of mountain rivers. Ecol Chem Eng S 23:413–424. https://doi.org/10.1515/eces-2016-0029 Kraal P, Burton ED, Rose AL, Cheetham MD, Bush RT, Sullivan LA (2013) Decoupling between water column oxygenation and benthic phosphate dynamics in a shallow eutrophic estuary. Environ Sci Technol 47:3114–3121. https://doi.org/10.1021/es304868t Li X, Hou L, Liu M, Zheng Y, Yin G, Lin X, Cheng L, Li Y, Hu X (2015) Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ Sci Technol 49:11560–11568. https://doi.org/10.1021/acs.est.5b03419 Li WJ, Wang ZY, Huang HJ (2019) Relationship between the southern Yellow Sea Cold Water Mass and the distribution and composition of suspended particulate matter in summer and autumn seasons. J Sea Res:154. https://doi.org/10.1016/j.seares.2019.101812 Li CC, Quan Q, Gan YD, Dong JY, Fang JH, Wang LF, Liu J (2020) Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci Total Environ:749. https://doi.org/10.1016/j.scitotenv.2020.141555 Liang L, Liu C-Q, Zhu X, Ngwenya BT, Wang Z, Song L, Li J (2020) Zinc isotope characteristics in the biogeochemical cycle as revealed by analysis of suspended particulate matter (SPM) in Aha Lake and Hongfeng Lake, Guizhou, China. J Earth Sci-China 31:126–140. https://doi.org/10.1007/s12583-017-0957-8 Lin SS, Shen SL, Zhou A, Lyu HM (2021) Assessment andmanagement of lake eutrophication: a case study in Lake Erhai. China Sci Total Environ 751:141618. https://doi.org/10.1016/j.scitotenv.2020.141618 Liu J, Ma K, Qu L (2015) Ecological risk assessments and context-dependence analysis of heavy metal contamination in the sediments of mangrove swamp in Leizhou Peninsula, China. Mar Pollut Bull 100:224–230. https://doi.org/10.1016/j.marpolbul.2015.08.046 Liu J-J, Diao Z-H, Xu X-R, Xie Q (2019) Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments. Sci Total Environ 666:894–901. https://doi.org/10.1016/j.scitotenv.2019.02.288 Luo Y-F, Li L, Li Q-H, Jiao S-L, Li H-M, Chen F-F (2017) Spatial and temporal distribution of chlorophyll a and its relationship to algae and environmental factors in Aha Reservoir. Huanjing kexue 38:4151–4159. https://doi.org/10.13227/j.hjkx.201703177 Lv X, Shao M, Li J, Xie C (2014) Nitrate removal with lateral flow sulphur autotrophic denitrification reactor. Environ Technol 35:2692–2697. https://doi.org/10.1080/09593330.2014.918660 Magri M, Benelli S, Bonaglia S, Zilius M, Castaldelli G, Bartoli M (2020) The effects of hydrological extremes on denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and mineralization in a coastal lagoon. Sci Total Environ 740:140169. https://doi.org/10.1016/j.scitotenv.2020.140169 Mukherjee DP (2014) Dynamics of metal ions in suspended sediments in Hugli estuary, India and its importance towards sustainable monitoring program. J Hydrol 517:762–776. https://doi.org/10.1016/j.jhydrol.2014.05.069 Pan F et al (2019) Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: a case study in the Jiulong River Estuary, China. Environ Pollut 255. https://doi.org/10.1016/j.envpol.2019.113134 Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK, Singh JS (2020) DNRA: a short-circuit in biological N-cycling to conserve nitrogen in terrestrial. Sci Total Environ 738:139710. https://doi.org/10.1016/j.scitotenv.2020.139710 Pavoni E, Crosera M, Petranich E, Oliveri P, Klun K, Faganeli J, Covelli S, Adami G (2020) Trace elements in the estuarine systems of the Gulf of Trieste (northern Adriatic Sea): a chemometric approach to depict partitioning and behaviour of particulate, colloidal and truly dissolved fractions. Chemosphere 252. https://doi.org/10.1016/j.chemosphere.2020.126517 Pourabadehei M, Mulligan CN (2016) Resuspension of sediment, a new approach for remediation of contaminated sediment. Environ Pollut 213:63–75. https://doi.org/10.1016/j.envpol.2016.01.082 Qin BQ, Zhou J, Elser JJ, Gardner WS, Deng JM, Brookes JD (2020) Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ Sci Technol 54:3191–3198. https://doi.org/10.1021/acs.est.9b05858 Rao K, Tang T, Zhang X, Wang M, Liu J, Wu B, Wang P, Ma Y (2021) Spatial-temporal dynamics, ecological risk assessment, source identification and interactions with internal nutrients release of heavy metals in surface sediments from a large Chinese shallow lake. Chemosphere 282:131041–131041. https://doi.org/10.1016/j.chemosphere.2021.131041 Roberts KL, Kessler AJ, Grace MR, Cook PLM (2014) Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditions in a periodically hypoxic estuary. Geochim Cosmochim Ac 133:313–324. https://doi.org/10.1016/j.gca.2014.02.042 Saber A, James DE, Hannoun IA (2020) Effects of lake water level fluctuation due to drought and extreme winter precipitation on mixing and water quality of an alpine lake, case study: Lake Arrowhead. California Sci Total Environ 714:136762. https://doi.org/10.1016/j.scitotenv.2020.136762 Sharma VK, Sohn M (2009) Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ Int 35:743–759. https://doi.org/10.1016/j.envint.2009.01.005 Tang CY, Li YP, He C, Acharya K (2020) Dynamic behavior of sediment resuspension and nutrients release in the shallow and wind-exposed Meiliang Bay of Lake Taihu. Sci Total Environ:708. https://doi.org/10.1016/j.scitotenv.2019.135131 Tomaszewski M, Cema G, Ziembinska-Buczynska A (2019) Short-term effects of reduced graphene oxide on the anammox biomass activity at low temperatures. Sci Total Environ 646:206–211. https://doi.org/10.1016/j.scitotenv.2018.07.283 van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, VanNieuwenhze MS, Kartal B, van Niftrik L (2015) Anammox planctomycetes have a peptidoglycan cell wall. Nat Commun 6. https://doi.org/10.1038/ncomms7878 Wang MZ, Xu X, Wu Z, Zhang X, Sun P, Wen Y, Wang Z, Lu X, Zhang W, Wang X, Tong Y (2019) Seasonal pattern of nutrient limitation in a eutrophic lake and quantitative analysis of the impacts from internal nutrient cycling. Environ Sci Technol 53:13675–13686. https://doi.org/10.1021/acs.est.9b04266 Wang JT, Yuan S, Tang L, Pan XD, Pu XC, Li R, Shen C (2020) Contribution of heavy metal in driving microbial distribution in a eutrophic river. Sci Total Environ 712:136295. https://doi.org/10.1016/j.scitotenv.2019.136295 Wu SJ, Zhao YP, Chen YY, Dong XM, Wang MY, Wang GX (2019) Sulfur cycling in freshwater sediments: a cryptic driving force of iron deposition and phosphorus mobilization. Sci Total Environ 657:1294–1303. https://doi.org/10.1016/j.scitotenv.2018.12.161 Xu GH, Sun ZH, Fang WY, Liu JJ, Xu XB, Lv CX (2018) Release of phosphorus from sediments under wave-induced liquefaction. Water Res 144:503–511. https://doi.org/10.1016/j.watres.2018.07.038 Yin GY, Hou L, Liu M, Li X, Zheng Y, Gao J, Jiang X, Wang R, Yu C, Lin X (2017) DNRA in intertidal sediments of the Yangtze Estuary. J Geophys Res-Biogeo 122:1988–1998. https://doi.org/10.1002/2017jg003766 Zamani B, Koch M, Hodges BR, Fakheri-Fard A (2018) Pre-impoundment assessment of the limnological processes and eutrophication in a reservoir using three-dimensional modeling: Abolabbas reservoir, Iran. J Appl Water Eng Res 6:48–61. https://doi.org/10.1080/23249676.2016.1209440 Zeng LQ, Yang F, Yan CZ, Wang XH (2018) High-resolution characterization of labile phosphorus, iron, and manganese in sediments of different trophic waters in Lake Taihu, China. Water Sci Technol 77:286–295. https://doi.org/10.2166/wst.2017.534 Zeng J, Han G, Yang K (2020) Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, northeast Thailand. J Clean Prod 265. https://doi.org/10.1016/j.jclepro.2020.121898 Zhang H, Zhai S, Zhang A, Zhou Y, Yu Z (2015) Heavy metals in suspended matters during a tidal cycle in the turbidity maximum around the Changjiang (Yangtze) Estuary. Acta Oceanol Sin 34:36–45. https://doi.org/10.1007/s13131-015-0675-y Zhang W, Jin X, Di Z, Zhu X, Shan B (2016) Heavy metals in surface sediments of the shallow lakes in eastern China: their relations with environmental factors and anthropogenic activities. Environ Sci Pollut Res 23:25364–25373. https://doi.org/10.1007/s11356-016-7643-8 Zhang Q, Jin X, Li SM (2020a) Heavy metal pollution in slow-moving river: highlight the high risks posed by suspended particulate matter. Soil Sediment Contam 29:914–928. https://doi.org/10.1080/15320383.2020.1783509 Zhang Z, Cao R, Mamat Z, Mamat A, Chen Y (2020b) A study of synchronous measurement of liable phosphorous and iron based on ZrO-Chelex (DGT) in the sediment of the Chaiwopu Lake, Xinjiang, Northwest China. Environ Sci Pollut Res 27:15057–15067. https://doi.org/10.1007/s11356-020-07701-y Zhu L, Wang T, Liu J, Xu S, Chen X, Jiang X (2019) Metal distribution in sediments of a drinking water reservoir: influence of reservoir morphometry and hydrodynamics. Environ Sci Pollut Res 26:9599–9609. https://doi.org/10.1007/s11356-019-04424-7