Microbial Networks in SPRING - Semi-parametric Rank-Based Correlation and Partial Correlation Estimation for Quantitative Microbiome Data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aitchison, 1983, Principal component analysis of compositional data, Biometrika, 70, 57, 10.1093/biomet/70.1.57
Aitchison, 2003, A concise guide to compositional data analysis, 2nd Compositional Data Analysis Workshop
Alneberg, 2014, Binning metagenomic contigs by coverage and composition, Nat. Methods, 11, 1144, 10.1038/nmeth.3103
Bahram, 2018, Structure and function of the global topsoil microbiome, Nature, 560, 233, 10.1038/s41586-018-0386-6
Callahan, 2017, Exact sequence variants should replace operational taxonomic units in marker-gene data analysis, ISME J., 11, 2639, 10.1038/ismej.2017.119
Callahan, 2016, DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581, 10.1038/nmeth.3869
Cao, 2018, Large covariance estimation for compositional data via composition-adjusted thresholding, J. Am. Stat. Assoc., 1, 10.1080/01621459.2018.1442340
CaoY. ZhangA. LiH. Microbial composition estimation from sparse count data. 2017
Caporaso, 2010, QIIME allows analysis of high- throughput community sequencing data, Nature, 7, 335, 10.1038/nmeth.f.303
de la CruzR. KreftJ.-U. Geometric mean extension for data sets with zeros. 2018
Drew, 2017, Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets, PLoS Comput. Biol., 13, e1005625, 10.1371/journal.pcbi.1005625
Ducklow, 2000, Bacterial production and biomass in the oceans, Microbial Ecology of the Oceans, 85
Edgar, 2013, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, 10, 996, 10.1038/nmeth.2604
Egozcue, 2018, Linear association in compositional data analysis, Aust. J. Stat., 47, 3, 10.17713/ajs.v47i1.689
Fan, 2017, High dimensional semiparametric latent graphical model for mixed data, J. R. Stat. Soc. B, 79, 405, 10.1111/rssb.12168
Faust, 2015, Cross-biome comparison of microbial association networks, Front. Microbiol., 6, 1200, 10.3389/fmicb.2015.01200
Faust, 2012, Microbial interactions: from networks to models, Nat. Rev. Microbiol., 10, 538, 10.1038/nrmicro2832
Friedman, 2012, Inferring correlation networks from genomic survey data, PLoS Comput. Biol., 8, e1002687, 10.1371/journal.pcbi.1002687
Friedman, 2008, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 9, 432, 10.1093/biostatistics/kxm045
Fuhrman, 2015, Marine microbial community dynamics and their ecological interpretation, Nat. Rev. Microbiol., 13, 133, 10.1038/nrmicro3417
Gifford, 2011, Quantitative analysis of a deeply sequenced marine microbial metatranscriptome, ISME J., 5, 461, 10.1038/ismej.2010.141
Handelsman, 2004, Metagenomics: application of genomics to uncultured microorganisms, Microbiol. Mol. Biol. Rev., 68, 669, 10.1128/MMBR.68.4.669-685.2004
Holmes, 2012, Dirichlet multinomial mixtures: Generative models for microbial metagenomics, PLoS ONE, 7, e30126, 10.1371/journal.pone.0030126
Huttenhower, 2012, Structure, function and diversity of the healthy human microbiome, Nature, 486, 207, 10.1038/nature11234
Kurtz, 2017, SpiecEasi: Sparse Inverse Covariance for Ecological Statistical Inference
Kurtz, 2015, Sparse and compositionally robust inference of microbial ecological networks, PLoS Comput. Biol., 11, e1004226, 10.1371/journal.pcbi.1004226
Lagkouvardos, 2017, Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons, PeerJ, 5, e2836, 10.7717/peerj.2836
Langille, 2013, Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nat. Biotechnol., 31, 814, 10.1038/nbt.2676
Li, 2015, Microbiome, metagenomics and high-dimensional compositional data analysis, Annu. Rev. Stat. Appl., 2, 73, 10.1146/annurev-statistics-010814-020351
Lin, 2014, Variable selection in regression with compositional covariates, Biometrika, 101, 785, 10.1093/biomet/asu031
Liu, 2012, High-dimensional semiparametric Gaussian copula graphical models, Ann. Stat., 40, 2293, 10.1214/12-AOS1037
Liu, 2009, The nonparanormal: semiparametric estimation of high dimensional undirected graphs, J. Mach. Learn. Res., 10, 2295, 10.1145/1577069.1755863
Liu, 2010, Stability approach to regularization selection (stars) for high dimensional graphical models, Proceedings of the Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS), 1432
Mandal, 2015, Analysis of composition of microbiomes: a novel method for studying microbial composition, Microb. Ecol. Health Dis., 26, 1, 10.3402/mehd.v26.27663
McDonald, 2018, American gut: an open platform for citizen science microbiome research, mSystems, 3, e00031, 10.1128/mSystems.00031-18
McMurdie, 2014, Waste not, want not: why rarefying microbiome data is inadmissible, PLoS Comput. Biol., 10, e1003531, 10.1371/journal.pcbi.1003531
Meinshausen, 2006, High-dimensional graphs and variable selection with the Lasso, Ann. Stat., 34, 1436, 10.1214/009053606000000281
MüllerC. L. BonneauR. KurtzZ. Generalized stability approach for regularized graphical models. 2016
Props, 2017, Absolute quantification of microbial taxon abundances, ISME J., 11, 584, 10.1038/ismej.2016.117
Quinn, 2017, Propr: an R-package for identifying proportionally abundant features using compositional data analysis, Sci. Rep., 7, 1, 10.1038/s41598-017-16520-0
Risso, 2018, A general and flexible method for signal extraction from single-cell RNA-seq data, Nat. Commun., 9, 284, 10.1038/s41467-017-02554-5
Ruiz, 2017, A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity, Nat. Commun., 8, 518, 10.1038/s41467-017-00531-6
Satinsky, 2013, Use of internal standards for quantitative metatranscriptome and metagenome analysis, Methods Enzymol., 531, 237, 10.1016/B978-0-12-407863-5.00012-5
Schloss, 2009, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537, 10.1128/AEM.01541-09
Sczyrba, 2017, Critical assessment of metagenome interpretation–a benchmark of metagenomics software, Nat. Methods, 14, 1063, 10.1038/nmeth.4458
Sedlar, 2017, Bioinformatics strategies for taxonomy independent binning and visualization of sequences in shotgun metagenomics, Comput. Struct. Biotechnol. J., 15, 48, 10.1016/j.csbj.2016.11.005
Soetaert, 2009, rootSolve: Nonlinear Root Finding, Equilibrium and Steady-State Analysis of Ordinary Differential Equations
Stämmler, 2016, Adjusting microbiome profiles for differences in microbial load by spike-in bacteria, Microbiome, 4, 28, 10.1186/s40168-016-0175-0
Sunagawa, 2015, Structure and function of the global ocean microbiome, Science, 348, 1261359, 10.1126/science.1261359
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B, 58, 267, 10.1111/j.2517-6161.1996.tb02080.x
Tipton, 2018, Fungi stabilize connectivity in the lung and skin microbial ecosystems, Microbiome, 6, 12, 10.1186/s40168-017-0393-0
Tkacz, 2018, Absolute quantitation of microbiota abundance in environmental samples, Microbiome, 6, 1, 10.1186/s40168-018-0491-7
Vandeputte, 2017, Quantitative microbiome profiling links gut community variation to microbial load, Nature, 551, 507, 10.1038/nature24460
Woese, 1977, Phylogenetic structure of the prokaryotic domain, PNAS, 74, 5088, 10.1073/pnas.74.11.5088
Yee, 2010, The VGAM package for categorical data analysis, J. Stat. Softw., 32, 1, 10.18637/jss.v032.i10
YoonG. CarrollR. J. GaynanovaI. Sparse semiparametric canonical correlation analysis for data of mixed types. 2018
Yoon, 2018, mixedCCA: Sparse CCA for High-Dimensional Mixed Data
The huge package for high-dimensional undirected graph estimation in R10591062 ZhaoT. LiuH. RoederK. LaffertyJ. WassermanL. 26834510J. Mach. Learn. Res.132012