Microbial Biomass Turnover in Indian Subtropical Soils under Different Sugarcane Intercropping Systems

Agronomy Journal - Tập 98 Số 3 - Trang 698-704 - 2006
Archna Suman1, Menhi Lal1, A. K. Singh1, Asha Gaur1
1Division of Crop Production Indian Inst. of Sugarcane Research Rae‐Barely Rd., P.O. Dilkusha Lucknow 226 002 UP India

Tóm tắt

Changes in soil organic C (Corg), total N (Nt), available nutrients, soil microbial biomass C (Cmic) and N (Nmic), and mineralizable C and N in the sugarcane (Saccharum officinarum L.) rhizosphere were evaluated under intensive sugarcane cropping systems with intercrops including wheat (Triticum aestivum L.), maize (Zea mays L.), rajmash (Phaseolus vulgaris L.), green gram [Vigna radiata (L.) R. Wilczek var. radiata], cowpea [Vign aunguiculata (L.) Walp.], lentil (Lens culinaris Medik.), mustard (Brassica rapa L.), potato (Solanum tuberosum L.), and sesbania (Sesbania rostrata Bremek. & Oberm.) in subtropical soils of India. Organic C increased significantly when maize (25%), wheat (24%), mustard (19%), potato (17%), and rajmash (13%) were intercropped with sugarcane, while legume intercrops substantially increased Nt and available N. Increase in microbial respiration was greater where maize (42%), wheat (37%), or mustard (31%) were intercropped compared with pulse crops. Soil microbial biomass C accounted for 2.7 to 3.3% of Corg content and Nmic accounted for 2.6 to 3.7% of Nt under different intercropping conditions. A higher CO2 evolution rate and wider Cmic/Nmic ratios were recorded with cereal and mustard intercrops, whereas higher N mineralization was recorded with pulse intercrops. Results indicate that intercropping with pulse crops and incorporation of their labile C substrate improved N mineralization. The build up of the C pool and Cmic in the case of cereals, mustard, and potato intercropping should promote long‐term stability.

Từ khóa


Tài liệu tham khảo

10.1126/science.248.4954.477

10.1007/s11104-005-0997-1

10.1097/00010694-198010000-00008

10.1016/0038-0717(85)90115-4

10.1016/0038-0717(89)90117-X

10.1016/0038-0717(90)90094-G

10.1016/0038-0717(93)90140-7

10.1007/978-1-4757-0611-6_3

10.1007/s00374-003-0590-9

10.1016/S0003-2670(00)88973-4

10.2136/sssaj1992.03615995005600030018x

10.1007/s11104-004-1791-1

10.2136/sssaspecpub35

10.2136/sssaj1994.03615995005800030023x

Filiminova M., 1997, Microbiological activity in native soils

10.1016/0378-4290(93)90117-6

10.1046/j.1365-2389.1999.00266.x

10.1016/S0065-2113(02)78003-6

10.2136/sssaj1994.03615995005800010036x

10.1002/jpln.19871500102

10.1007/BF00388474

10.1016/0038-0717(90)90189-7

Jenkinson D.S., 1981, Soil biochemistry, 415

10.1016/0038-0717(76)90001-8

Lal M., 2004, Technology package for sugarcane based intercropping systems

10.1007/s00374-004-0720-z

10.1126/science.1071148

10.1002/jpln.19861490408

10.1016/S0929-1393(96)00123-0

10.1016/0378-4290(93)90122-4

10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2

10.2307/3546566

10.2307/1310021

Page A.L., 1982, Methods of soil analysis. Part 2, 903

10.1007/s00374-004-0741-7

10.2136/sssaj1997.03615995006100010023x

10.2136/sssaj2000.6462002x

Smith J.L., 1994, Soil biology: Effect on soil quality, 91

Snedecor G.W., 1967, Statistical methods

10.1071/SR9920195

10.2136/sssaj1997.03615995006100010019x

10.1016/0378-4290(93)90123-5

Vandermeer J.H., 1990, Agroecology, 481

10.4141/cjss81-024

10.1111/j.1469-185X.1992.tb00728.x

10.1016/S0065-2504(08)60065-3

10.1016/0038-0717(95)00093-T

10.1007/BF00014422

10.1007/s00374-003-0689-z

Willey R.W., 1983, Better crops for food, 83

Zaman M., 1998, Nitrogen mineralization rates from soil amended with dairy pond waste, Austr. J. Soil Res., 36, 217, 10.1071/S97048

10.1007/s00374-003-0716-0