Microarray and Co-expression Network Analysis of Genes Associated with Acute Doxorubicin Cardiomyopathy in Mice
Tóm tắt
Clinical use of doxorubicin (DOX) in cancer therapy is limited by its dose-dependent cardiotoxicity. But molecular mechanisms underlying this phenomenon have not been well defined. This study was to investigate the effect of DOX on the changes of global genomics in hearts. Acute cardiotoxicity was induced by giving C57BL/6J mice a single intraperitoneal injection of DOX (15 mg/kg). Cardiac function and apoptosis were monitored using echocardiography and TUNEL assay at days 1, 3 and 5. Myocardial glucose and ATP levels were measured. Microarray assays were used to screen gene expression profiles in the hearts at day 5, and the results were confirmed with qPCR analysis. DOX administration caused decreased cardiac function, increased cardiomyocyte apoptosis and decreased glucose and ATP levels. Microarrays showed 747 up-regulated genes and 438 down-regulated genes involved in seven main functional categories. Among them, metabolic pathway was the most affected by DOX. Several key genes, including 2,3-bisphosphoglycerate mutase (Bpgm), hexokinase 2, pyruvate dehydrogenase kinase, isoenzyme 4 and fructose-2,6-bisphosphate 2-phosphatase, are closely related to glucose metabolism. Gene co-expression networks suggested the core role of Bpgm in DOX cardiomyopathy. These results obtained in mice were further confirmed in cultured cardiomyocytes. In conclusion, genes involved in glucose metabolism, especially Bpgm, may play a central role in the pathogenesis of DOX-induced cardiotoxicity.
Tài liệu tham khảo
Zhu, W., Shou, W., Payne, R. M., Caldwell, R., & Field, L. J. (2008). A mouse model for juvenile doxorubicin-induced cardiac dysfunction. Pediatric Research, 64(5), 488–494.
Tokarska-Schlattner, M., Zaugg, M., Zuppinger, C., Wallimann, T., & Schlattner, U. (2006). New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 41(3), 389–405.
Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18(11), 1639–1642.
Shi, Y., Moon, M., Dawood, S., McManus, B., & Liu, P. P. (2011). Mechanisms and management of doxorubicin cardiotoxicity. Herz, 36(4), 296–305.
Zeng, Y., Wang, H. X., Guo, S. B., Yang, H., Zeng, X. J., Fang, Q., et al. (2013). Transcriptional effects of E3 ligase atrogin-1/MAFbx on apoptosis, hypertrophy and inflammation in neonatal rat cardiomyocytes. PLoS One, 8(1), e53831.
Zhang, Y., Kang, Y. M., Tian, C., Zeng, Y., Jia, L. X., Ma, X., et al. (2011). Overexpression of Nrdp1 in the heart exacerbates doxorubicin-induced cardiac dysfunction in mice. PLoS One, 6(6), e21104. doi:10.1371/journal.pone.0021104.
Ashour, A. E., Sayed-Ahmed, M. M., Abd-Allah, A. R., Korashy, H. M., Maayah, Z. H., Alkhalidi, H., et al. (2012). Metformin rescues the myocardium from doxorubicin-induced energy starvation and mitochondrial damage in rats. Oxidative Medicine and Cellular Longevity, 2012, 434195.
Berthiaume, J. M., & Wallace, K. B. (2007). Persistent alterations to the gene expression profile of the heart subsequent to chronic doxorubicin treatment. Cardiovascular Toxicology, 7(3), 178–191. doi:10.1007/s12012-007-0026-0.
Thompson, K. L., Rosenzweig, B. A., Zhang, J., Knapton, A. D., Honchel, R., Lipshultz, S. E., et al. (2010). Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology, 66(2), 303–314. doi:10.1007/s00280-009-1164-9.
Tokarska-Schlattner, M., Lucchinetti, E., Zaugg, M., Kay, L., Gratia, S., Guzun, R., et al. (2010). Early effects of doxorubicin in perfused heart: Transcriptional profiling reveals inhibition of cellular stress response genes. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 298(4), R1075–R1088. doi:10.1152/ajpregu.00360.2009.
Trivedi, P. P., Kushwaha, S., Tripathi, D. N., & Jena, G. B. (2011). Cardioprotective effects of hesperetin against doxorubicin-induced oxidative stress and DNA damage in rat. Cardiovascular Toxicology, 11(3), 215–225. doi:10.1007/s12012-011-9114-2.
Santacruz, L., Darrabie, M. D., Mantilla, J. G., Mishra, R., Feger, B. J., & Jacobs, D. O. (2014). Creatine supplementation reduces doxorubicin-induced cardiomyocellular injury. Cardiovascular Toxicology,. doi:10.1007/s12012-014-9283-x.
Sharma, R., Singhal, S. S., Cheng, J., Yang, Y., Sharma, A., Zimniak, P., et al. (2001). RLIP76 is the major ATP-dependent transporter of glutathione-conjugates and doxorubicin in human erythrocytes. Archives of Biochemistry and Biophysics, 391(2), 171–179. doi:10.1006/abbi.2001.2395.
Tan, G., Lou, Z., Liao, W., Zhu, Z., Dong, X., Zhang, W., et al. (2011). Potential biomarkers in mouse myocardium of doxorubicin-induced cardiomyopathy: A metabonomic method and its application. PLoS One, 6(11), e27683.
Zordoky, B. N., Anwar-Mohamed, A., Aboutabl, M. E., & El-Kadi, A. O. (2010). Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicology and Applied Pharmacology, 242(1), 38–46. doi:10.1016/j.taap.2009.09.012.
Pointon, A. V., Walker, T. M., Phillips, K. M., Luo, J., Riley, J., Zhang, S. D., et al. (2010). Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One, 5(9), e12733.
Li, H. H., Kedar, V., Zhang, C., McDonough, H., Arya, R., Wang, D. Z., et al. (2004). Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. Journal of Clinical Investigation, 114(8), 1058–1071. doi:10.1172/jci22220.
Yang, D., Zeng, Y., Tian, C., Liu, J., Guo, S. B., Zheng, Y. H., et al. (2010). Transcriptomic analysis of mild hypothermia-dependent alterations during endothelial reperfusion injury. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 25(6), 605–614.
Zhang, J. S., Zhang, Y. L., Wang, H. X., Xia, Y. L., Wang, L., Jiang, Y. N., et al. (2014). Identification of genes related to the early stage of Angiotensin II-induced acute renal injury by microarray and integrated gene network analysis. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 34(4), 1137–1151. doi:10.1159/000366327.
The Gene Ontology (GO) project in 2006. (2006). Nucleic Acids Research, 34(Database issue), D322–D326.
Dupuy, D., Bertin, N., Hidalgo, C. A., Venkatesan, K., Tu, D., Lee, D., et al. (2007). Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nature Biotechnology, 25(6), 663–668.
Schlitt, T., Palin, K., Rung, J., Dietmann, S., Lappe, M., Ukkonen, E., et al. (2003). From gene networks to gene function. Genome Research, 13(12), 2568–2576.
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32(Database issue), D277–D280.
Prieto, C., Risueno, A., & Fontanillo, C. (2008). De las Rivas J. Human gene coexpression landscape: Confident network derived from tissue transcriptomic profiles. PLoS One, 3(12), e3911.
Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101–113.
Lu, Y. Y., Chen, Q. L., Guan, Y., Guo, Z. Z., Zhang, H., Zhang, W., et al. (2014). Transcriptional profiling and co-expression network analysis identifies potential biomarkers to differentiate chronic hepatitis B and the caused cirrhosis. Molecular BioSystems, 10(5), 1117–1125.
Carlson, M. R., Zhang, B., Fang, Z., Mischel, P. S., Horvath, S., & Nelson, S. F. (2006). Gene connectivity, function, and sequence conservation: Predictions from modular yeast co-expression networks. BMC Genomics, 7, 40.
Shi, J., Abdelwahid, E., & Wei, L. (2011). Apoptosis in anthracycline cardiomyopathy. Current Pediatric Reviews, 7(4), 329–336.
Zhang, Y. W., Shi, J., Li, Y. J., & Wei, L. (2009). Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum immunolgiae et therapiae experimentalis, 57(6), 435–445.
Evison, B. J., Bilardi, R. A., Chiu, F. C., Pezzoni, G., Phillips, D. R., & Cutts, S. M. (2009). CpG methylation potentiates pixantrone and doxorubicin-induced DNA damage and is a marker of drug sensitivity. Nucleic Acids Research, 37(19), 6355–6370. doi:10.1093/nar/gkp700.
Pugatsch, T., Abedat, S., Lotan, C., & Beeri, R. (2006). Anti-erbB2 treatment induces cardiotoxicity by interfering with cell survival pathways. Breast Cancer Research, 8(4), R35.
Abdel-aleem, S., el-Merzabani, M. M., Sayed-Ahmed, M., Taylor, D. A., & Lowe, J. E. (1997). Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes. Journal of Molecular and Cellular Cardiology, 29(2), 789–797. doi:10.1006/jmcc.1996.0323.
Berg, J. M. T. J., & Stryer, L. (2002). Biochemistry (5th ed.). New York: W H Freeman.
Wu, R., Smeele, K. M., Wyatt, E., Ichikawa, Y., Eerbeek, O., Sun, L., et al. (2011). Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury. Circulation Research, 108(1), 60–69. doi:10.1161/circresaha.110.223115.
McCommis, K. S., Douglas, D. L., Krenz, M., & Baines, C. P. (2013). Cardiac-specific hexokinase 2 overexpression attenuates hypertrophy by increasing pentose phosphate pathway flux. Journal of the American Heart Association, 2(6), e000355. doi:10.1161/jaha.113.000355.
Zhang, S., Hulver, M. W., McMillan, R. P., Cline, M. A., & Gilbert, E. R. (2014). The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutrition & Metabolism, 11(1), 10. doi:10.1186/1743-7075-11-10.
McAinch, A. J., Cornall, L. M., Watts, R., Hryciw, D. H., O’Brien, P. E., & Cameron-Smith, D. (2014). Increased pyruvate dehydrogenase kinase expression in cultured myotubes from obese and diabetic individuals. European Journal of Nutrition,. doi:10.1007/s00394-014-0780-2.
Dai, Q., Yin, Y., Liu, W., Wei, L., Zhou, Y., Li, Z., et al. (2013). Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells. International Journal of Biochemistry & Cell Biology, 45(7), 1468–1478. doi:10.1016/j.biocel.2013.04.015.