Microalgal Torrefaction for Solid Biofuel Production

Trends in Biotechnology - Tập 38 - Trang 1023-1033 - 2020
Shih-Hsin Ho1, Congyu Zhang1, Fei Tao2, Chaofan Zhang1, Wei-Hsin Chen3,4,5,6
1State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
2State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
3Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
4Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan
5Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
6Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan

Tài liệu tham khảo

Blankenship, 2011, Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement, Science, 332, 805, 10.1126/science.1200165 Kumar, 2010, Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends Biotechnol., 28, 371, 10.1016/j.tibtech.2010.04.004 Liao, 2016, Fuelling the future: microbial engineering for the production of sustainable biofuels, Nat. Rev. Microbiol., 14, 288, 10.1038/nrmicro.2016.32 Williams, 2010, Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics and economics, Energy Environ. Sci., 3, 554, 10.1039/b924978h Georgianna, 2012, Exploiting diversity and synthetic biology for the production of algal biofuels, Nature, 488, 329, 10.1038/nature11479 Chen, 2015, Macroalgae for biofuels production: progress and perspectives, Renew. Sustain. Energy Rev., 47, 427, 10.1016/j.rser.2015.03.086 Raheem, 2015, Thermochemical conversion of microalgal biomass for biofuel production, Renew. Sust. Energ. Rev., 49, 990, 10.1016/j.rser.2015.04.186 Kumar, 2016, A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes, Green Chem., 19, 44, 10.1039/C6GC01937D Chen, 2015, Thermochemical conversion of microalgal biomass into biofuels: a review, Bioresour. Technol., 184, 314, 10.1016/j.biortech.2014.11.050 Yang, 2019, Pyrolysis of microalgae: a critical review, Fuel Process. Technol., 186, 53, 10.1016/j.fuproc.2018.12.012 Tian, 2014, Hydrothermal liquefaction for algal biorefinery: a critical review, Renew. Sust. Energ. Rev., 38, 933, 10.1016/j.rser.2014.07.030 Bach, 2017, Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide, Bioresour. Technol., 244, 1393, 10.1016/j.biortech.2017.03.153 Choi, 2019, Performance and potential appraisal of various microalgae as direct combustion fuel, Bioresour. Technol., 273, 341, 10.1016/j.biortech.2018.11.030 Niu, 2019, Biomass torrefaction: properties, applications, challenges, and economy, Renew. Sust. Energ. Rev., 115, 109395, 10.1016/j.rser.2019.109395 Chew, 2011, Recent advances in biomass pretreatment - torrefaction fundamentals and technology, Renew. Sust. Energ. Rev., 15, 4212, 10.1016/j.rser.2011.09.017 Chen, 2015, A state-of-the-art review of biomass torrefaction, densification and applications, Renew. Sust. Energ. Rev., 44, 847, 10.1016/j.rser.2014.12.039 Batidzirai, 2013, Biomass torrefaction technology: techno-economic status and future prospects, Energy, 62, 196, 10.1016/j.energy.2013.09.035 Zhang, 2019, Comparison and characterization of property variation of microalgal biomass with non-oxidative and oxidative torrefaction, Fuel, 246, 375, 10.1016/j.fuel.2019.02.139 Wu, 2012, The characteristics of torrefied microalgae, Appl. Energy, 100, 52, 10.1016/j.apenergy.2012.03.002 Chen, 2018, Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation, Energy Convers. Manag., 160, 209, 10.1016/j.enconman.2018.01.036 Chen, 2016, Impact of torrefaction on the composition, structure and reactivity of a microalga residue, Appl. Energy, 181, 110, 10.1016/j.apenergy.2016.07.130 Kumar, 2010, Iron ore grindability improvement by microwave pre-treatment, J. Ind. Eng. Chem., 16, 805, 10.1016/j.jiec.2010.05.008 Yong, 2018, Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent, Energy Convers. Manag., 165, 152, 10.1016/j.enconman.2018.03.046 Chen, 2014, Thermal decomposition dynamics and severity of microalgae residues in torrefaction, Bioresour. Technol., 169, 258, 10.1016/j.biortech.2014.06.086 Kai, 2019, Effect of torrefaction on rice straw physicochemical characteristics and particulate matter emission behavior during combustion, Bioresour. Technol., 278, 1, 10.1016/j.biortech.2019.01.032 López-González, 2015, Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils, Renew. Sust. Energ. Rev., 51, 1752, 10.1016/j.rser.2015.07.022 Tumuluru, 2011, A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application, Biofuels Bioprod. Biorefining-Biofpr, 5, 683, 10.1002/bbb.324 Castro, 2019, Resistance of in natura and torrefied wood chips to xylophage fungi, Sci. Rep., 9, 11068, 10.1038/s41598-019-47398-9 Chen, 2018, Hygroscopic transformation of woody biomass torrefaction for carbon storage, Appl. Energy, 231, 768, 10.1016/j.apenergy.2018.09.135 Acharjee, 2011, Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass, Bioresour. Technol., 102, 4849, 10.1016/j.biortech.2011.01.018 Luan, 2019, Progress and perspective on cyanobacterial glycogen metabolism engineering, Biotechnol. Adv., 37, 771, 10.1016/j.biotechadv.2019.04.005 Qiao, 2018, Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942, Appl. Environ. Microbiol., 84, 10.1128/AEM.02023-17 Pancha, 2019, Target of rapamycin-signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae, Plant J., 97, 485, 10.1111/tpj.14136 Bajhaiya, 2016, PSR1 is a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas reinhardtii, Plant Physiol., 170, 1216, 10.1104/pp.15.01907 Shimakawa, 2014, Respiration accumulates Calvin cycle intermediates for the rapid start of photosynthesis in Synechocystis sp. PCC 6803, Biosci. Biotechnol. Biochem., 78, 1997, 10.1080/09168451.2014.943648 Li, 2019, Phycobiliproteins: molecular structure, production, applications, and prospects, Biotechnol. Adv., 37, 340, 10.1016/j.biotechadv.2019.01.008 Pagels, 2019, Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications, Biotechnol. Adv., 37, 422, 10.1016/j.biotechadv.2019.02.010 Vavitsas, 2019, The synthetic biology toolkit for photosynthetic microorganisms, Plant Physiol., 181, 14, 10.1104/pp.19.00345 Wannathong, 2016, New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii, Appl. Microbiol. Biotechnol., 100, 5467, 10.1007/s00253-016-7354-6 Fields, 2019, Nuclear genome shuffling significantly increases production of chloroplast-based recombinant protein in Chlamydomonas reinhardtii, Algal Res., 41, 101523, 10.1016/j.algal.2019.101523 Shamriz, 2018, Engineering the chloroplast of Chlamydomonas reinhardtii to express the recombinant PfCelTOS-Il2 antigen-adjuvant fusion protein, J. Biotechnol., 266, 111, 10.1016/j.jbiotec.2017.12.015 Richter, 2018, A downstream box fusion allows stable accumulation of a bacterial cellulase in Chlamydomonas reinhardtii chloroplasts, Biotechnol. Biofuels, 11, 133, 10.1186/s13068-018-1127-7 Kong, 2018, Lipid catabolism in microalgae, New Phytol., 218, 1340, 10.1111/nph.15047 Korkhovoy, 2016, Genetically engineered microalgae for enhanced biofuel production, Curr. Biotechnol., 5, 256, 10.2174/2211550105666161010105635 Sizova, 2013, Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases, Plant J., 73, 873, 10.1111/tpj.12066 Greiner, 2017, Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9, Plant Cell, 29, 2498, 10.1105/tpc.17.00659 Daboussi, 2014, Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology, Nat. Commun., 5, 3831, 10.1038/ncomms4831 Jiang, 2014, Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii, Eukaryot. Cell, 13, 1465, 10.1128/EC.00213-14 Shin, 2016, CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii, Sci. Rep., 6, 27810, 10.1038/srep27810 Shin, 2019, Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production, Bioresour. Technol., 271, 368, 10.1016/j.biortech.2018.09.121 Ferenczi, 2017, Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA, Proc. Natl. Acad. Sci. U. S. A., 114, 13567, 10.1073/pnas.1710597114 Kao, 2017, CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii, Bioresour. Technol., 245, 1527, 10.1016/j.biortech.2017.04.111 Ajjawi, 2017, Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator, Nat. Biotechnol., 35, 647, 10.1038/nbt.3865 Li, 2019, Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion, Sci. Adv., 5, eaau3795, 10.1126/sciadv.aau3795 Bajhaiya, 2017, Transcriptional engineering of microalgae prospects for high-value chemicals, Trends Biotechnol., 35, 95, 10.1016/j.tibtech.2016.06.001 Zhang, 2018, Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index, Appl. Energy, 220, 598, 10.1016/j.apenergy.2018.03.129 Chen, 2012, An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction, Appl. Energy, 100, 318, 10.1016/j.apenergy.2012.05.056 Chen, 2011, An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction, Appl. Energy, 88, 3636, 10.1016/j.apenergy.2011.03.040 Bach, 2017, A comprehensive study on pyrolysis kinetics of microalgal biomass, Energy Convers. Manag., 131, 109, 10.1016/j.enconman.2016.10.077 Chen, 2015, An energy analysis of torrefaction for upgrading microalga residue as a solid fuel, Bioresour. Technol., 185, 285, 10.1016/j.biortech.2015.02.095 Chen, 2015, Torrefaction operation and optimization of microalga residue for energy densification and utilization, Appl. Energy, 154, 622, 10.1016/j.apenergy.2015.05.068 Motasemi, 2013, A review on the microwave-assisted pyrolysis technique, Renew. Sustain. Energy Rev., 28, 317, 10.1016/j.rser.2013.08.008 Fuad, 2019, Microwave torrefaction for viable fuel production: a review on theory, affecting factors, potential and challenges, Fuel, 253, 512, 10.1016/j.fuel.2019.04.151 Mohamed, 2019, Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures, Appl. Catal. B Environ., 253, 226, 10.1016/j.apcatb.2019.04.058 Ho, 2018, Characterization of biomass waste torrefaction under conventional and microwave heating, Bioresour. Technol., 264, 7, 10.1016/j.biortech.2018.05.047 Bach, 2016, Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction, Renew. Sustain. Energy Rev., 54, 665, 10.1016/j.rser.2015.10.014 Leng, 2018, Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process, Bioresour. Technol., 256, 529, 10.1016/j.biortech.2018.01.121 He, 2018, Wet torrefaction of biomass for high quality solid fuel production: a review, Renew. Sustain. Energy Rev., 91, 259, 10.1016/j.rser.2018.03.097 Li, 2015, Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating, ACS Sustain. Chem. Eng., 3, 2022, 10.1021/acssuschemeng.5b00296 Bach, 2016, Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating, Energy Convers. Manag., 141, 163, 10.1016/j.enconman.2016.07.035 Chen, 2014, Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass, Appl. Energy, 114, 104, 10.1016/j.apenergy.2013.09.045 Zhang, 2019, Oxidative torrefaction of biomass nutshells: evaluations of energy efficiency as well as biochar transportation and storage, Appl. Energy, 235, 428, 10.1016/j.apenergy.2018.10.090 Chen, 2014, Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N, Bioresour. Technol., 155, 245, 10.1016/j.biortech.2013.12.116 Phusunti, 2017, Effects of torrefaction on physical properties, chemical composition and reactivity of microalgae, Korean J. Chem. Eng., 35, 503, 10.1007/s11814-017-0297-5