Microalgal Torrefaction for Solid Biofuel Production
Tài liệu tham khảo
Blankenship, 2011, Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement, Science, 332, 805, 10.1126/science.1200165
Kumar, 2010, Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends Biotechnol., 28, 371, 10.1016/j.tibtech.2010.04.004
Liao, 2016, Fuelling the future: microbial engineering for the production of sustainable biofuels, Nat. Rev. Microbiol., 14, 288, 10.1038/nrmicro.2016.32
Williams, 2010, Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics and economics, Energy Environ. Sci., 3, 554, 10.1039/b924978h
Georgianna, 2012, Exploiting diversity and synthetic biology for the production of algal biofuels, Nature, 488, 329, 10.1038/nature11479
Chen, 2015, Macroalgae for biofuels production: progress and perspectives, Renew. Sustain. Energy Rev., 47, 427, 10.1016/j.rser.2015.03.086
Raheem, 2015, Thermochemical conversion of microalgal biomass for biofuel production, Renew. Sust. Energ. Rev., 49, 990, 10.1016/j.rser.2015.04.186
Kumar, 2016, A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes, Green Chem., 19, 44, 10.1039/C6GC01937D
Chen, 2015, Thermochemical conversion of microalgal biomass into biofuels: a review, Bioresour. Technol., 184, 314, 10.1016/j.biortech.2014.11.050
Yang, 2019, Pyrolysis of microalgae: a critical review, Fuel Process. Technol., 186, 53, 10.1016/j.fuproc.2018.12.012
Tian, 2014, Hydrothermal liquefaction for algal biorefinery: a critical review, Renew. Sust. Energ. Rev., 38, 933, 10.1016/j.rser.2014.07.030
Bach, 2017, Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide, Bioresour. Technol., 244, 1393, 10.1016/j.biortech.2017.03.153
Choi, 2019, Performance and potential appraisal of various microalgae as direct combustion fuel, Bioresour. Technol., 273, 341, 10.1016/j.biortech.2018.11.030
Niu, 2019, Biomass torrefaction: properties, applications, challenges, and economy, Renew. Sust. Energ. Rev., 115, 109395, 10.1016/j.rser.2019.109395
Chew, 2011, Recent advances in biomass pretreatment - torrefaction fundamentals and technology, Renew. Sust. Energ. Rev., 15, 4212, 10.1016/j.rser.2011.09.017
Chen, 2015, A state-of-the-art review of biomass torrefaction, densification and applications, Renew. Sust. Energ. Rev., 44, 847, 10.1016/j.rser.2014.12.039
Batidzirai, 2013, Biomass torrefaction technology: techno-economic status and future prospects, Energy, 62, 196, 10.1016/j.energy.2013.09.035
Zhang, 2019, Comparison and characterization of property variation of microalgal biomass with non-oxidative and oxidative torrefaction, Fuel, 246, 375, 10.1016/j.fuel.2019.02.139
Wu, 2012, The characteristics of torrefied microalgae, Appl. Energy, 100, 52, 10.1016/j.apenergy.2012.03.002
Chen, 2018, Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation, Energy Convers. Manag., 160, 209, 10.1016/j.enconman.2018.01.036
Chen, 2016, Impact of torrefaction on the composition, structure and reactivity of a microalga residue, Appl. Energy, 181, 110, 10.1016/j.apenergy.2016.07.130
Kumar, 2010, Iron ore grindability improvement by microwave pre-treatment, J. Ind. Eng. Chem., 16, 805, 10.1016/j.jiec.2010.05.008
Yong, 2018, Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent, Energy Convers. Manag., 165, 152, 10.1016/j.enconman.2018.03.046
Chen, 2014, Thermal decomposition dynamics and severity of microalgae residues in torrefaction, Bioresour. Technol., 169, 258, 10.1016/j.biortech.2014.06.086
Kai, 2019, Effect of torrefaction on rice straw physicochemical characteristics and particulate matter emission behavior during combustion, Bioresour. Technol., 278, 1, 10.1016/j.biortech.2019.01.032
López-González, 2015, Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils, Renew. Sust. Energ. Rev., 51, 1752, 10.1016/j.rser.2015.07.022
Tumuluru, 2011, A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application, Biofuels Bioprod. Biorefining-Biofpr, 5, 683, 10.1002/bbb.324
Castro, 2019, Resistance of in natura and torrefied wood chips to xylophage fungi, Sci. Rep., 9, 11068, 10.1038/s41598-019-47398-9
Chen, 2018, Hygroscopic transformation of woody biomass torrefaction for carbon storage, Appl. Energy, 231, 768, 10.1016/j.apenergy.2018.09.135
Acharjee, 2011, Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass, Bioresour. Technol., 102, 4849, 10.1016/j.biortech.2011.01.018
Luan, 2019, Progress and perspective on cyanobacterial glycogen metabolism engineering, Biotechnol. Adv., 37, 771, 10.1016/j.biotechadv.2019.04.005
Qiao, 2018, Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942, Appl. Environ. Microbiol., 84, 10.1128/AEM.02023-17
Pancha, 2019, Target of rapamycin-signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae, Plant J., 97, 485, 10.1111/tpj.14136
Bajhaiya, 2016, PSR1 is a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas reinhardtii, Plant Physiol., 170, 1216, 10.1104/pp.15.01907
Shimakawa, 2014, Respiration accumulates Calvin cycle intermediates for the rapid start of photosynthesis in Synechocystis sp. PCC 6803, Biosci. Biotechnol. Biochem., 78, 1997, 10.1080/09168451.2014.943648
Li, 2019, Phycobiliproteins: molecular structure, production, applications, and prospects, Biotechnol. Adv., 37, 340, 10.1016/j.biotechadv.2019.01.008
Pagels, 2019, Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications, Biotechnol. Adv., 37, 422, 10.1016/j.biotechadv.2019.02.010
Vavitsas, 2019, The synthetic biology toolkit for photosynthetic microorganisms, Plant Physiol., 181, 14, 10.1104/pp.19.00345
Wannathong, 2016, New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii, Appl. Microbiol. Biotechnol., 100, 5467, 10.1007/s00253-016-7354-6
Fields, 2019, Nuclear genome shuffling significantly increases production of chloroplast-based recombinant protein in Chlamydomonas reinhardtii, Algal Res., 41, 101523, 10.1016/j.algal.2019.101523
Shamriz, 2018, Engineering the chloroplast of Chlamydomonas reinhardtii to express the recombinant PfCelTOS-Il2 antigen-adjuvant fusion protein, J. Biotechnol., 266, 111, 10.1016/j.jbiotec.2017.12.015
Richter, 2018, A downstream box fusion allows stable accumulation of a bacterial cellulase in Chlamydomonas reinhardtii chloroplasts, Biotechnol. Biofuels, 11, 133, 10.1186/s13068-018-1127-7
Kong, 2018, Lipid catabolism in microalgae, New Phytol., 218, 1340, 10.1111/nph.15047
Korkhovoy, 2016, Genetically engineered microalgae for enhanced biofuel production, Curr. Biotechnol., 5, 256, 10.2174/2211550105666161010105635
Sizova, 2013, Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases, Plant J., 73, 873, 10.1111/tpj.12066
Greiner, 2017, Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9, Plant Cell, 29, 2498, 10.1105/tpc.17.00659
Daboussi, 2014, Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology, Nat. Commun., 5, 3831, 10.1038/ncomms4831
Jiang, 2014, Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii, Eukaryot. Cell, 13, 1465, 10.1128/EC.00213-14
Shin, 2016, CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii, Sci. Rep., 6, 27810, 10.1038/srep27810
Shin, 2019, Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production, Bioresour. Technol., 271, 368, 10.1016/j.biortech.2018.09.121
Ferenczi, 2017, Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA, Proc. Natl. Acad. Sci. U. S. A., 114, 13567, 10.1073/pnas.1710597114
Kao, 2017, CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii, Bioresour. Technol., 245, 1527, 10.1016/j.biortech.2017.04.111
Ajjawi, 2017, Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator, Nat. Biotechnol., 35, 647, 10.1038/nbt.3865
Li, 2019, Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion, Sci. Adv., 5, eaau3795, 10.1126/sciadv.aau3795
Bajhaiya, 2017, Transcriptional engineering of microalgae prospects for high-value chemicals, Trends Biotechnol., 35, 95, 10.1016/j.tibtech.2016.06.001
Zhang, 2018, Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index, Appl. Energy, 220, 598, 10.1016/j.apenergy.2018.03.129
Chen, 2012, An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction, Appl. Energy, 100, 318, 10.1016/j.apenergy.2012.05.056
Chen, 2011, An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction, Appl. Energy, 88, 3636, 10.1016/j.apenergy.2011.03.040
Bach, 2017, A comprehensive study on pyrolysis kinetics of microalgal biomass, Energy Convers. Manag., 131, 109, 10.1016/j.enconman.2016.10.077
Chen, 2015, An energy analysis of torrefaction for upgrading microalga residue as a solid fuel, Bioresour. Technol., 185, 285, 10.1016/j.biortech.2015.02.095
Chen, 2015, Torrefaction operation and optimization of microalga residue for energy densification and utilization, Appl. Energy, 154, 622, 10.1016/j.apenergy.2015.05.068
Motasemi, 2013, A review on the microwave-assisted pyrolysis technique, Renew. Sustain. Energy Rev., 28, 317, 10.1016/j.rser.2013.08.008
Fuad, 2019, Microwave torrefaction for viable fuel production: a review on theory, affecting factors, potential and challenges, Fuel, 253, 512, 10.1016/j.fuel.2019.04.151
Mohamed, 2019, Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures, Appl. Catal. B Environ., 253, 226, 10.1016/j.apcatb.2019.04.058
Ho, 2018, Characterization of biomass waste torrefaction under conventional and microwave heating, Bioresour. Technol., 264, 7, 10.1016/j.biortech.2018.05.047
Bach, 2016, Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction, Renew. Sustain. Energy Rev., 54, 665, 10.1016/j.rser.2015.10.014
Leng, 2018, Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process, Bioresour. Technol., 256, 529, 10.1016/j.biortech.2018.01.121
He, 2018, Wet torrefaction of biomass for high quality solid fuel production: a review, Renew. Sustain. Energy Rev., 91, 259, 10.1016/j.rser.2018.03.097
Li, 2015, Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating, ACS Sustain. Chem. Eng., 3, 2022, 10.1021/acssuschemeng.5b00296
Bach, 2016, Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating, Energy Convers. Manag., 141, 163, 10.1016/j.enconman.2016.07.035
Chen, 2014, Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass, Appl. Energy, 114, 104, 10.1016/j.apenergy.2013.09.045
Zhang, 2019, Oxidative torrefaction of biomass nutshells: evaluations of energy efficiency as well as biochar transportation and storage, Appl. Energy, 235, 428, 10.1016/j.apenergy.2018.10.090
Chen, 2014, Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N, Bioresour. Technol., 155, 245, 10.1016/j.biortech.2013.12.116
Phusunti, 2017, Effects of torrefaction on physical properties, chemical composition and reactivity of microalgae, Korean J. Chem. Eng., 35, 503, 10.1007/s11814-017-0297-5