Microalgae as a biocathode and feedstock in anode chamber for a self-sustainable microbial fuel cell technology: A review
Tài liệu tham khảo
Catal, 2015, Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics, Bioresour. Technol., 187, 77, 10.1016/j.biortech.2015.03.099
Chae, 2010, Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells, Int. J. Hydrogen Energy, 35, 13379, 10.1016/j.ijhydene.2009.11.114
Chae, 2010, Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells, Bioresour. Technol., 101, 5350, 10.1016/j.biortech.2010.02.035
Cheah, 2015, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Bioresour. Technol., 184, 190, 10.1016/j.biortech.2014.11.026
Chew, 2017, Microalgae biorefinery: high value products perspectives, Bioresour. Technol., 229, 53, 10.1016/j.biortech.2017.01.006
Del Campo, 2013, Microbial fuel cell with an algae-assisted cathode: a preliminary assessment, J. Power Sources, 242, 638, 10.1016/j.jpowsour.2013.05.110
Doyle, 2015, Methods for enrichment of novel electrochemically-active microorganisms, Bioresour. Technol., 195, 273, 10.1016/j.biortech.2015.07.025
Feng, 2008, Brewery wastewater treatment using air-cathode microbial fuel cells, Appl. Microbiol. Biotechnol., 78, 873, 10.1007/s00253-008-1360-2
Fu, 2009, Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis, Bioresour. Technol., 100, 4183, 10.1016/j.biortech.2009.03.059
Goh, 2019, Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review, Renew. Sustain. Energy Rev., 107, 59, 10.1016/j.rser.2019.02.012
Gorby, 2006, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proc. Natl. Acad. Sci., 103, 11358, 10.1073/pnas.0604517103
He, 2009, Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria, Environ. Sci. Technol., 43, 1648, 10.1021/es803084a
Ho, 2012, Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N, Bioresour. Technol., 113, 244, 10.1016/j.biortech.2011.11.133
Inoue, 2011, Specific localization of the c‐type cytochrome OmcZ at the anode surface in current‐producing biofilms of Geobacter sulfurreducens, Environ. Microbiol. Rep., 3, 211, 10.1111/j.1758-2229.2010.00210.x
Islam, 2017, Electrogenic and antimethanogenic properties of Bacillus cereus for enhanced power generation in anaerobic sludge-driven microbial fuel cells, Energy Fuels, 31, 1, 10.1021/acs.energyfuels.7b00434
Jiang, 2012, A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation, Biotechnol. Lett., 34, 1269, 10.1007/s10529-012-0899-2
Kakarla, 2014, Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation, Int. J. Hydrogen Energy, 39, 10275, 10.1016/j.ijhydene.2014.04.158
Khandelwal, 2018, Microbial fuel cell powered by lipid extracted algae: a promising system for algal lipids and power generation, Bioresour. Technol., 247, 520, 10.1016/j.biortech.2017.09.119
Leang, 2003, OmcB, a c-type polyheme cytochrome, involved in Fe (III) reduction in Geobacter sulfurreducens, J. Bacteriol., 185, 2096, 10.1128/JB.185.7.2096-2103.2003
Leang, 2010, Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens, Appl. Environ. Microbiol., 76, 4080, 10.1128/AEM.00023-10
Lee, 2017, Cell disruption and lipid extraction for microalgal biorefineries: a review, Bioresour. Technol., 244, 1317, 10.1016/j.biortech.2017.06.038
Liu, 2016, Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell, Bioresour. Technol., 222, 226, 10.1016/j.biortech.2016.09.112
Logan, 2009, Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol., 7, 375, 10.1038/nrmicro2113
Logan, 2006, Microbial fuel Cells: methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016
Logan, 2006, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 14, 512, 10.1016/j.tim.2006.10.003
Lovley, 2006, Microbial fuel cells: novel microbial physiologies and engineering approaches, Curr. Opin. Biotechnol., 17, 327, 10.1016/j.copbio.2006.04.006
Lower, 2005, Putative mineral-specific proteins synthesized by a metal reducing bacterium, Am. J. Sci., 305, 687, 10.2475/ajs.305.6-8.687
Mcglade, 2015, The geographical distribution of fossil fuels unused when limiting global warming to 2 °C, Nature, 517, 187, 10.1038/nature14016
Meinshausen, 2009, Greenhouse-gas emission targets for limiting global warming to 2 °C, Nature, 458, 1158, 10.1038/nature08017
Moreno-Garrido, 2008, Microalgae immobilization: current techniques and uses, Bioresour. Technol., 99, 3949, 10.1016/j.biortech.2007.05.040
Nishio, 2013, Light/electricity conversion by defined cocultures of Chlamydomonas reinhardtii and Geobacter sulferreducens, J. Biosci. Bioeng., 115, 412, 10.1016/j.jbiosc.2012.10.015
Oh, 2006, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biotechnol., 70, 162, 10.1007/s00253-005-0066-y
Rajesh, 2015, Improving performance of microbial fuel cell while controlling methanogenesis by Chaetoceros pretreatment of anodic inoculum, Bioresour. Technol., 180, 66, 10.1016/j.biortech.2014.12.095
Rashid, 2013, Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell, Sci. Total Environ., 456–457, 91, 10.1016/j.scitotenv.2013.03.067
Reguera, 2005, Extracellular electron transfer via microbial nanowires, Nature, 435, 1098, 10.1038/nature03661
Rismani-Yazdi, 2013, Suppression of methanogenesis in cellulose-fed microbial fuel cells in relation to performance, metabolite formation, and microbial population, Bioresour. Technol., 129, 281, 10.1016/j.biortech.2012.10.137
Udaiyappan, 2017, A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment, J. Water Process Eng., 20, 8, 10.1016/j.jwpe.2017.09.006
USEIA, 2016
Varun, 2009, LCA of renewable energy for electricity generation systems—a review, Renew. Sustain. Energy Rev., 13, 1067, 10.1016/j.rser.2008.08.004
Velasquez-Orta, 2010, The effect of flavin electron shuttles in microbial fuel cells current production, Appl. Microbiol. Biotechnol., 85, 1373, 10.1007/s00253-009-2172-8
Velasquez-Orta, 2009, Energy from algae using microbial fuel cells, Biotechnol. Bioeng., 103, 1068, 10.1002/bit.22346
Walker, 2018, Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms, ISME J., 12, 48, 10.1038/ismej.2017.141
Wang, 2012, Simultaneous bioelectrochemical degradation of algae sludge and energy recovery in microbial fuel cells, RSC Adv., 2, 7228, 10.1039/c2ra20631e
Wang, 2015, Characteristic changes in algal organic matter derived from Microcystis aeruginosa in microbial fuel cells, Bioresour. Technol., 195, 25, 10.1016/j.biortech.2015.06.014
Wang, 2010, Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs), Biosens. Bioelectron., 25, 2639, 10.1016/j.bios.2010.04.036
Yang, 2012, Bacterial extracellular electron transfer in bioelectrochemical systems, Process Biochem., 47, 1707, 10.1016/j.procbio.2012.07.032
Yong, 2014, Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells, Bioresour. Technol., 152, 220, 10.1016/j.biortech.2013.10.086
Zhang, 2013, Concentrated solar power plants: review and design methodology, Renew. Sustain. Energy Rev., 22, 466, 10.1016/j.rser.2013.01.032
Zhou, 2010, Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems, Appl. Energy, 87, 380, 10.1016/j.apenergy.2009.08.012