MicroRNAs as regulators and mediators of c-MYC function

Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms - Tập 1849 Số 5 - Trang 544-553 - 2015
René Jackstadt1, Heiko Hermeking2
1Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, D-80337 Munich, Germany.
2Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, D-80337 Munich, Germany. Electronic address: [email protected].

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dang, 2012, MYC on the path to cancer, Cell, 149, 22, 10.1016/j.cell.2012.03.003

Meyer, 2008, Reflecting on 25years with MYC, Nat. Rev. Cancer, 8, 976, 10.1038/nrc2231

Haluska, 1987, Oncogene activation by chromosome translocation in human malignancy, Annu. Rev. Genet., 21, 321, 10.1146/annurev.ge.21.120187.001541

Nesbit, 1999, MYC oncogenes and human neoplastic disease, Oncogene, 18, 3004, 10.1038/sj.onc.1202746

Marcu, 1992, Myc function and regulation, Annu. Rev. Biochem., 61, 809, 10.1146/annurev.bi.61.070192.004113

Chappell, 2000, A mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: a novel mechanism of oncogene de-regulation, Oncogene, 19, 4437, 10.1038/sj.onc.1203791

Albert, 1994, Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt's lymphoma cell lines, Oncogene, 9, 759

Salghetti, 1999, Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc, EMBO J., 18, 717, 10.1093/emboj/18.3.717

He, 1998, Identification of c-MYC as a target of the APC pathway, Science, 281, 1509, 10.1126/science.281.5382.1509

van de Wetering, 2002, The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells, Cell, 111, 241, 10.1016/S0092-8674(02)01014-0

Sansom, 2004, Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration, Genes Dev., 18, 1385, 10.1101/gad.287404

Dang, 2006, The c-Myc target gene network, Semin. Cancer Biol., 16, 253, 10.1016/j.semcancer.2006.07.014

Menssen, 2002, Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes, Proc. Natl. Acad. Sci. U. S. A., 99, 6274, 10.1073/pnas.082005599

Jackstadt, 2013, Genome-wide analysis of c-MYC-regulated mRNAs and miRNAs, and c-MYC DNA binding by next-generation sequencing, Methods Mol. Biol., 1012, 145, 10.1007/978-1-62703-429-6_11

Hermeking, 1994, Mediation of c-Myc-induced apoptosis by p53, Science, 265, 2091, 10.1126/science.8091232

Zindy, 1998, Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization, Genes Dev., 12, 2424, 10.1101/gad.12.15.2424

Vafa, 2002, c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability, Mol. Cell, 9, 1031, 10.1016/S1097-2765(02)00520-8

Eilers, 2008, Myc's broad reach, Genes Dev., 22, 2755, 10.1101/gad.1712408

Jung, 2009, The c-MYC–AP4–p21 cascade, Cell Cycle, 8, 982, 10.4161/cc.8.7.7949

Cowling, 2006, Mechanism of transcriptional activation by the Myc oncoproteins, Semin. Cancer Biol., 16, 242, 10.1016/j.semcancer.2006.08.001

Rahl, 2010, c-Myc regulates transcriptional pause release, Cell, 141, 432, 10.1016/j.cell.2010.03.030

Adhikary, 2005, Transcriptional regulation and transformation by Myc proteins, Nat. Rev. Mol. Cell Biol., 6, 635, 10.1038/nrm1703

Ayer, 1995, Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3, Cell, 80, 767, 10.1016/0092-8674(95)90355-0

Peukert, 1997, An alternative pathway for gene regulation by Myc, EMBO J., 16, 5672, 10.1093/emboj/16.18.5672

Herold, 2002, Negative regulation of the mammalian UV response by Myc through association with Miz-1, Mol. Cell, 10, 509, 10.1016/S1097-2765(02)00633-0

Mao, 2003, Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression, Curr. Biol., 13, 882, 10.1016/S0960-9822(03)00297-5

Staller, 2001, Repression of p15INK4b expression by Myc through association with Miz-1, Nat. Cell Biol., 3, 392, 10.1038/35070076

Smale, 1989, The “initiator” as a transcription control element, Cell, 57, 103, 10.1016/0092-8674(89)90176-1

Bartel, 2009, MicroRNAs: target recognition and regulatory functions, Cell, 136, 215, 10.1016/j.cell.2009.01.002

Hammond, 2001, Argonaute2, a link between genetic and biochemical analyses of RNAi, Science, 293, 1146, 10.1126/science.1064023

Hammond, 2000, An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature, 404, 293, 10.1038/35005107

Elbashir, 2001, Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate, EMBO J., 20, 6877, 10.1093/emboj/20.23.6877

Fabian, 2010, Regulation of mRNA translation and stability by microRNAs, Annu. Rev. Biochem., 79, 351, 10.1146/annurev-biochem-060308-103103

Friedman, 2009, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19, 92, 10.1101/gr.082701.108

Chang, 2009, Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation, Proc. Natl. Acad. Sci. U. S. A., 106, 3384, 10.1073/pnas.0808300106

Newman, 2008, Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing, RNA, 14, 1539, 10.1261/rna.1155108

Rybak, 2008, A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment, Nat. Cell Biol., 10, 987, 10.1038/ncb1759

Hagan, 2009, Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells, Nat. Struct. Mol. Biol., 16, 1021, 10.1038/nsmb.1676

Heo, 2009, TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation, Cell, 138, 696, 10.1016/j.cell.2009.08.002

Wang, 2013, c-Myc modulates microRNA processing via the transcriptional regulation of Drosha, Sci. Rep., 3, 1942, 10.1038/srep01942

Kumar, 2009, Dicer1 functions as a haploinsufficient tumor suppressor, Genes Dev., 23, 2700, 10.1101/gad.1848209

Karube, 2005, Reduced expression of Dicer associated with poor prognosis in lung cancer patients, Cancer Sci., 96, 111, 10.1111/j.1349-7006.2005.00015.x

Arrate, 2010, MicroRNA biogenesis is required for Myc-induced B-cell lymphoma development and survival, Cancer Res., 70, 6083, 10.1158/0008-5472.CAN-09-4736

Brennecke, 2003, Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila, Cell, 113, 25, 10.1016/S0092-8674(03)00231-9

Brennecke, 2003, Towards a complete description of the microRNA complement of animal genomes, Genome Biol., 4, 228, 10.1186/gb-2003-4-9-228

O'Donnell, 2005, c-Myc-regulated microRNAs modulate E2F1 expression, Nature, 435, 839, 10.1038/nature03677

He, 2005, A microRNA polycistron as a potential human oncogene, Nature, 435, 828, 10.1038/nature03552

Tanzer, 2004, Molecular evolution of a microRNA cluster, J. Mol. Biol., 339, 327, 10.1016/j.jmb.2004.03.065

Ventura, 2008, Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters, Cell, 132, 875, 10.1016/j.cell.2008.02.019

Houbaviy, 2003, Embryonic stem cell-specific microRNAs, Dev. Cell, 5, 351, 10.1016/S1534-5807(03)00227-2

Volinia, 2006, A microRNA expression signature of human solid tumors defines cancer gene targets, Proc. Natl. Acad. Sci. U. S. A., 103, 2257, 10.1073/pnas.0510565103

Ota, 2004, Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma, Cancer Res., 64, 3087, 10.1158/0008-5472.CAN-03-3773

Xiao, 2008, Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes, Nat. Immunol., 9, 405, 10.1038/ni1575

Sandhu, 2013, B-cell malignancies in microRNA Emu-miR-17~92 transgenic mice, Proc. Natl. Acad. Sci. U. S. A., 110, 18208, 10.1073/pnas.1315365110

Mu, 2009, Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas, Genes Dev., 23, 2806, 10.1101/gad.1872909

Olive, 2009, miR-19 is a key oncogenic component of mir-17–92, Genes Dev., 23, 2839, 10.1101/gad.1861409

Dews, 2006, Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster, Nat. Genet., 38, 1060, 10.1038/ng1855

Uziel, 2009, The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma, Proc. Natl. Acad. Sci. U. S. A., 106, 2812, 10.1073/pnas.0809579106

Conkrite, 2011, miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma, Genes Dev., 25, 1734, 10.1101/gad.17027411

Kumar, 2013, The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation, Mol. Cell. Biol., 33, 1782, 10.1128/MCB.01228-12

Woods, 2007, Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors, J. Biol. Chem., 282, 2130, 10.1074/jbc.C600252200

Sylvestre, 2007, An E2F/miR-20a autoregulatory feedback loop, J. Biol. Chem., 282, 2135, 10.1074/jbc.M608939200

Petrocca, 2008, Emerging role of miR-106b-25/miR-17–92 clusters in the control of transforming growth factor beta signaling, Cancer Res., 68, 8191, 10.1158/0008-5472.CAN-08-1768

Ambs, 2008, Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer, Cancer Res., 68, 6162, 10.1158/0008-5472.CAN-08-0144

Petrocca, 2008, E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer, Cancer Cell, 13, 272, 10.1016/j.ccr.2008.02.013

Song, 2013, MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling, Cell, 154, 311, 10.1016/j.cell.2013.06.026

Song, 2013, The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation, Cell Stem Cell, 13, 87, 10.1016/j.stem.2013.06.003

Xu, 2012, Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy, J. Cell. Physiol., 227, 1391, 10.1002/jcp.22852

Bar, 2010, miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics, PLoS One, 5, e10859, 10.1371/journal.pone.0010859

Ling, 2012, Tumor suppressor miR-22 suppresses lung cancer cell progression through post-transcriptional regulation of ErbB3, J. Cancer Res. Clin. Oncol., 138, 1355, 10.1007/s00432-012-1194-2

Feng, 2011, Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation, Oncogene, 30, 2242, 10.1038/onc.2010.602

Mestdagh, 2010, MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors, Oncogene, 29, 1394, 10.1038/onc.2009.429

Loven, 2010, MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma, Proc. Natl. Acad. Sci. U. S. A., 107, 1553, 10.1073/pnas.0913517107

Schulte, 2008, MYCN regulates oncogenic microRNAs in neuroblastoma, Int. J. Cancer, 122, 699, 10.1002/ijc.23153

Chang, 2008, Widespread microRNA repression by Myc contributes to tumorigenesis, Nat. Genet., 40, 43, 10.1038/ng.2007.30

Ma, 2010, miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis, Nat. Cell Biol., 12, 247, 10.1038/ncb2024

Chivukula, 2008, Circular reasoning: microRNAs and cell-cycle control, Trends Biochem. Sci., 33, 474, 10.1016/j.tibs.2008.06.008

Hermeking, 2007, p53 enters the microRNA world, Cancer Cell, 12, 414, 10.1016/j.ccr.2007.10.028

Hermeking, 2010, The miR-34 family in cancer and apoptosis, Cell Death Differ., 17, 193, 10.1038/cdd.2009.56

Lee, 2007, The tumor suppressor microRNA let-7 represses the HMGA2 oncogene, Genes Dev., 21, 1025, 10.1101/gad.1540407

Gao, 2009, c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism, Nature, 458, 762, 10.1038/nature07823

Wise, 2008, Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction, Proc. Natl. Acad. Sci. U. S. A., 105, 18782, 10.1073/pnas.0810199105

Vander Heiden, 2009, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 324, 1029, 10.1126/science.1160809

DeBerardinis, 2008, The biology of cancer: metabolic reprogramming fuels cell growth and proliferation, Cell Metab., 7, 11, 10.1016/j.cmet.2007.10.002

Hermeking, 2012, MicroRNAs in the p53 network: micromanagement of tumour suppression, Nat. Rev. Cancer, 12, 613, 10.1038/nrc3318

Aqeilan, 2010, miR-15a and miR-16-1 in cancer: discovery, function and future perspectives, Cell Death Differ., 17, 215, 10.1038/cdd.2009.69

Calin, 2002, Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U. S. A., 99, 15524, 10.1073/pnas.242606799

Calin, 2002, Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U. S. A., 99, 15524, 10.1073/pnas.242606799

Zhang, 2012, Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas, Oncogene, 31, 3002, 10.1038/onc.2011.470

Calin, 2002, Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U. S. A., 99, 15524, 10.1073/pnas.242606799

Klein, 2010, The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia, Cancer Cell, 17, 28, 10.1016/j.ccr.2009.11.019

Bonci, 2008, The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities, Nat. Med., 14, 1271, 10.1038/nm.1880

Cimmino, 2005, miR-15 and miR-16 induce apoptosis by targeting BCL2, Proc. Natl. Acad. Sci. U. S. A., 102, 13944, 10.1073/pnas.0506654102

Liu, 2008, miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes, Nucleic Acids Res., 36, 5391, 10.1093/nar/gkn522

Rissland, 2011, MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes, Mol. Cell, 43, 993, 10.1016/j.molcel.2011.08.021

Shi, 2014, p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial–mesenchymal transition and metastasis in colorectal cancer, Cancer Res., 74, 532, 10.1158/0008-5472.CAN-13-2203

Suzuki, 2009, Modulation of microRNA processing by p53, Nature, 460, 529, 10.1038/nature08199

Fabbri, 2011, Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia, JAMA, 305, 59, 10.1001/jama.2010.1919

Zhang, 2012, Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas, Cancer Cell, 22, 506, 10.1016/j.ccr.2012.09.003

Sander, 2008, MYC stimulates EZH2 expression by repression of its negative regulator miR-26a, Blood, 112, 4202, 10.1182/blood-2008-03-147645

Mott, 2010, Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB, J. Cell. Biochem., 110, 1155, 10.1002/jcb.22630

Kota, 2009, Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model, Cell, 137, 1005, 10.1016/j.cell.2009.04.021

Tarasov, 2007, Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest, Cell Cycle, 6, 1586, 10.4161/cc.6.13.4436

Chang, 2007, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis, Mol. Cell., 26, 745, 10.1016/j.molcel.2007.05.010

He, 2007, A microRNA component of the p53 tumour suppressor network, Nature, 447, 1130, 10.1038/nature05939

Raver-Shapira, 2007, Transcriptional activation of miR-34a contributes to p53-mediated apoptosis, Mol. Cell, 26, 731, 10.1016/j.molcel.2007.05.017

Bommer, 2007, p53-mediated activation of miRNA34 candidate tumor-suppressor genes, Curr. Biol., 17, 1298, 10.1016/j.cub.2007.06.068

Christoffersen, 2010, p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC, Cell Death Differ., 17, 236, 10.1038/cdd.2009.109

Yang, 2009, miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A, Genes Dev., 23, 2388, 10.1101/gad.1819009

Siemens, 2013, Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness, Oncotarget, 4, 1399, 10.18632/oncotarget.1202

Siemens, 2011, miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial–mesenchymal transitions, Cell Cycle, 10, 4256, 10.4161/cc.10.24.18552

Rokavec, 2014, IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis, J. Clin. Invest., 124, 1853, 10.1172/JCI73531

Cheng, 2014, miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment, Cell. Reports., 6, 1000, 10.1016/j.celrep.2014.02.023

Okada, 2014, A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression, Genes Dev., 28, 438, 10.1101/gad.233585.113

Lodygin, 2008, Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer, Cell Cycle, 7, 2591, 10.4161/cc.7.16.6533

Vogt, 2011, Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas, Virchows Arch., 458, 313, 10.1007/s00428-010-1030-5

Siemens, 2013, Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer, Clin. Cancer Res., 19, 710, 10.1158/1078-0432.CCR-12-1703

Sotillo, 2011, Myc overexpression brings out unexpected antiapoptotic effects of miR-34a, Oncogene, 30, 2587, 10.1038/onc.2010.634

Wei, 2008, The MYCN oncogene is a direct target of miR-34a, Oncogene, 27, 5204, 10.1038/onc.2008.154

Welch, 2007, MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells, Oncogene, 26, 5017, 10.1038/sj.onc.1210293

Cole, 2008, A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene, Mol. Cancer Res., 6, 735, 10.1158/1541-7786.MCR-07-2102

Kasinski, 2012, miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma, Cancer Res., 72, 5576, 10.1158/0008-5472.CAN-12-2001

Liu, 2011, The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44, Nat. Med., 17, 211, 10.1038/nm.2284

Han, 2013, A c-Myc-microRNA functional feedback loop affects hepatocarcinogenesis, Hepatology, 57, 2378, 10.1002/hep.26302

Yang, 2010, Hepatocellular carcinoma: a global view, Nat. Rev. Gastroenterol. Hepatol., 7, 448, 10.1038/nrgastro.2010.100

Liao, 2011, Autoregulatory suppression of c-Myc by miR-185-3p, J. Biol. Chem., 286, 33901, 10.1074/jbc.M111.262030

Sampson, 2007, MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells, Cancer Res., 67, 9762, 10.1158/0008-5472.CAN-07-2462

Abe, 2013, miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells, Hum. Reprod., 28, 750, 10.1093/humrep/des446

Zhen, 2013, Tumor suppressor PDCD4 modulates miR-184-mediated direct suppression of C-MYC and BCL2 blocking cell growth and survival in nasopharyngeal carcinoma, Cell Death Dis., 4, e872, 10.1038/cddis.2013.376

Miao, 2013, MiR-449c targets c-Myc and inhibits NSCLC cell progression, FEBS Lett., 587, 1359, 10.1016/j.febslet.2013.03.006

Ragimov, 1993, Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif, Oncogene, 8, 1183

Sachdeva, 2009, p53 represses c-Myc throughinduction of the tumor suppressor miR-145, Proc. Natl. Acad. Sci. U.S.A., 106, 3207, 10.1073/pnas.0808042106

Yamamura, 2012, MicroRNA-34a suppresses malignant transformation by targeting c-Myc transcriptional complexes in human renal cell carcinoma, Carcinogenesis, 33, 294, 10.1093/carcin/bgr286

Yamamura, 2012, MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells, PLoS One, 7, e29722, 10.1371/journal.pone.0029722

Kress, 2011, The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis, Mol. Cell, 41, 445, 10.1016/j.molcel.2011.01.023

Lal, 2009, miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements, Mol. Cell, 35, 610, 10.1016/j.molcel.2009.08.020

Challagundla, 2011, Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress, Mol. Cell. Biol., 31, 4007, 10.1128/MCB.05810-11

Ebert, 2012, Roles for microRNAs in conferring robustness to biological processes, Cell, 149, 515, 10.1016/j.cell.2012.04.005

El Baroudi, 2011, A curated database of miRNA mediated feed-forward loops involving MYC as master regulator, PLoS One, 6, e14742, 10.1371/journal.pone.0014742

Coller, 2007, “Myc'ed messages”: myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron, PLoS Genet., 3, e146, 10.1371/journal.pgen.0030146

Johnson, 2000, The paradox of E2F1: oncogene and tumor suppressor gene, Mol. Carcinog., 27, 151, 10.1002/(SICI)1098-2744(200003)27:3<151::AID-MC1>3.0.CO;2-C

Soucek, 2010, The ups and downs of Myc biology, Curr. Opin. Genet. Dev., 20, 91, 10.1016/j.gde.2009.11.001

Aguda, 2008, MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17–92, E2F, and Myc, Proc. Natl. Acad. Sci. U. S. A., 105, 19678, 10.1073/pnas.0811166106

Kim, 2010, Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate, Cancer Res., 70, 4820, 10.1158/0008-5472.CAN-10-0659

Poliseno, 2010, Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation, Sci. Signal., 3, ra29, 10.1126/scisignal.2000594

Jung, 2008, AP4 encodes a c-MYC-inducible repressor of p21, Proc. Natl. Acad. Sci. U. S. A., 105, 15046, 10.1073/pnas.0801773105

Fontana, 2008, Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM, PLoS One, 3, e2236, 10.1371/journal.pone.0002236

Sun, 2013, miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF, Carcinogenesis, 34, 426, 10.1093/carcin/bgs333

Yin, 2012, Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia, J. Biol. Chem., 287, 27055, 10.1074/jbc.M112.364414

Ling, 2013, MicroRNA-dependent cross-talk between VEGF and HIF1alpha in the diabetic retina, Cell. Signal., 25, 2840, 10.1016/j.cellsig.2013.08.039

Wang, 2009, AngiomiRs—key regulators of angiogenesis, Curr. Opin. Genet. Dev., 19, 205, 10.1016/j.gde.2009.04.002

Wolfer, 2011, MYC and metastasis, Cancer Res., 71, 2034, 10.1158/0008-5472.CAN-10-3776

Wolfer, 2010, MYC regulation of a “poor-prognosis” metastatic cancer cell state, Proc. Natl. Acad. Sci. U. S. A., 107, 3698, 10.1073/pnas.0914203107

Kozma, 1994, Investigation of c-myc oncogene amplification in colorectal cancer, Cancer Lett., 81, 165, 10.1016/0304-3835(94)90198-8

Thiery, 2009, Epithelial–mesenchymal transitions in development and disease, Cell, 139, 871, 10.1016/j.cell.2009.11.007

Vanharanta, 2013, Origins of metastatic traits, Cancer Cell, 24, 410, 10.1016/j.ccr.2013.09.007

Tam, 2013, The epigenetics of epithelial–mesenchymal plasticity in cancer, Nat. Med., 19, 1438, 10.1038/nm.3336

Brabletz, 2012, To differentiate or not—routes towards metastasis, Nat. Rev. Cancer, 12, 425, 10.1038/nrc3265

Yang, 2008, Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis, Dev. Cell, 14, 818, 10.1016/j.devcel.2008.05.009

Cho, 2010, Overexpression of c-Myc induces epithelial mesenchymal transition in mammary epithelial cells, Cancer Lett., 293, 230, 10.1016/j.canlet.2010.01.013

Cowling, 2007, c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1, Mol. Cell. Biol., 27, 5135, 10.1128/MCB.02282-06

Smith, 2009, A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition, Oncogene, 28, 422, 10.1038/onc.2008.395

Nieto, 2013, Epithelial plasticity: a common theme in embryonic and cancer cells, Science, 342, 1234850, 10.1126/science.1234850

Chen, 2012, LIFR is a breast cancer metastasis suppressor upstream of the Hippo–YAP pathway and a prognostic marker, Nat. Med., 18, 1511, 10.1038/nm.2940

Zhuang, 2012, Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK–STAT pathway, EMBO J., 31, 3513, 10.1038/emboj.2012.183

Liu, 2012, MYC suppresses cancer metastasis by direct transcriptional silencing of alphav and beta3 integrin subunits, Nat. Cell Biol., 14, 567, 10.1038/ncb2491

Yu, 2010, MicroRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling, Proc. Natl. Acad. Sci. U. S. A., 107, 8231, 10.1073/pnas.1002080107

Koch, 2007, Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach, Cell Cycle, 6, 205, 10.4161/cc.6.2.3742

Hahn, 2013, SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial–mesenchymal transition, EMBO J., 32, 3079, 10.1038/emboj.2013.236

Jackstadt, 2013, AP4 is a mediator of epithelial–mesenchymal transition and metastasis in colorectal cancer, J. Exp. Med., 210, 1331, 10.1084/jem.20120812

Jackstadt, 2013, AP4 directly downregulates p16 and p21 to suppress senescence and mediate transformation, Cell Death Dis., 4, e775, 10.1038/cddis.2013.282

Menssen, 2012, The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop, Proc. Natl. Acad. Sci. U. S. A., 109, E187, 10.1073/pnas.1105304109

Yamakuchi, 2008, miR-34a repression of SIRT1 regulates apoptosis, Proc. Natl. Acad. Sci. U. S. A., 105, 13421, 10.1073/pnas.0801613105

Byles, 2012, SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis, Oncogene, 31, 4619, 10.1038/onc.2011.612

Simic, 2013, SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis, Cell. Reprorts., 3, 1175, 10.1016/j.celrep.2013.03.019

Eades, 2011, miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells, J. Biol. Chem., 286, 25992, 10.1074/jbc.M111.229401

Frenzel, 2010, Targeting MYC-regulated miRNAs to combat cancer, Genes Cancer, 1, 660, 10.1177/1947601910377488

Morton, 2013, MYC-y mice: from tumour initiation to therapeutic targeting of endogenous MYC, Mol. Oncol., 7, 248, 10.1016/j.molonc.2013.02.015

Cheng, 2013, Canonical and non-canonical barriers facing antimiR cancer therapeutics, Curr. Med. Chem., 20, 3582, 10.2174/0929867311320290004

Kasinski, 2011, Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy, Nat. Rev. Cancer, 11, 849, 10.1038/nrc3166

Prochownik, 2010, Therapeutic targeting of Myc, Genes Cancer, 1, 650, 10.1177/1947601910377494

Kumar, 2008, Suppression of non-small cell lung tumor development by the let-7 microRNA family, Proc. Natl. Acad. Sci. U. S. A., 105, 3903, 10.1073/pnas.0712321105

Trang, 2010, Regression of murine lung tumors by the let-7 microRNA, Oncogene, 29, 1580, 10.1038/onc.2009.445

Korpal, 2011, Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization, Nat. Med., 17, 1101, 10.1038/nm.2401