MicroRNAs (−146a, −21 and −34a) are diagnostic and prognostic biomarkers for diabetic retinopathy
Tài liệu tham khảo
Whiting, 2011, IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030, Diabetes Res Clin Pract, 94, 311, 10.1016/j.diabres.2011.10.029
Arab, 1992, Diabetes mellitus in Egypt, World health statistics quarterly Rapport trimestriel de statistiques sanitaires mondiales, 45, 334
Herman, 1995, Diabetes mellitus in Egypt: risk factors and prevalence, Diabet Med, 12, 1126, 10.1111/j.1464-5491.1995.tb00432.x
Macky, 2011, Epidemiology of diabetic retinopathy in Egypt: a hospital-based study, Ophthalmic Res, 45, 73, 10.1159/000314876
Fong, 2004, Retinopathy in diabetes, Diabetes Care, 27, s84, 10.2337/diacare.27.2007.S84
Cai, 2002, The pathogenesis of diabetic retinopathy: old concepts and new questions, Eye, 16, 242, 10.1038/sj.eye.6700133
Oqurtsova, 2017, Global estimates for the prevalence of diabetes for 2015 and 2040, Diabetes Res Clin Pract, 128, 40, 10.1016/j.diabres.2017.03.024
Pusparajah, 2016, Molecular markers of diabetic retinopathy: potential screening tool of the future?, Front Physiol, 7, 200, 10.3389/fphys.2016.00200
Simó-Servat, 2019, Diabetic retinopathy in the context of patients with diabetes, Ophthalmic Res, 62, 211, 10.1159/000499541
Pescador, 2013, Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers, PloS One, 8, e77251, 10.1371/journal.pone.0077251
Rong, 2013, Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus, PloS One, 8, e73272, 10.1371/journal.pone.0073272
Banerjee, 2017, Role of microRNAs in type 2 diabetes and associated vascular complications, Biochimie, 139, 9, 10.1016/j.biochi.2017.05.007
Ambros, 2004, The functions of animal microRNAs, Nature, 431, 350, 10.1038/nature02871
Bartel, 2009, MicroRNAs: target recognition and regulatory functions, Cell, 136, 215, 10.1016/j.cell.2009.01.002
Mastropasqua, 2014, Role of microRNAs in the modulation of diabetic retinopathy, Prog Retin Eye Res, 43, 92, 10.1016/j.preteyeres.2014.07.003
Chen, 2008, Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure, Proc Natl Acad Sci USA, 105, 2111, 10.1073/pnas.0710228105
Kovacs, 2011, MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats, Invest Ophthalmol Vis Sci, 52, 4402, 10.1167/iovs.10-6879
He, 2016, Accuracy of microRNAs for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis, Clin Res Hepatol Gastroenterol, 40, 405, 10.1016/j.clinre.2016.02.001
McClelland, 2014, microRNA in the development of diabetic complications, Clin Sci, 126, 95, 10.1042/CS20130079
Qing, 2014, Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy, Cell Physiol Biochem, 34, 1733, 10.1159/000366374
Hermeking, 2010, The miR-34 family in cancer and apoptosis, Cell Death Differ, 17, 193, 10.1038/cdd.2009.56
Slabáková, 2017, Alternative mechanisms of miR-34a regulation in cancer, Cell Death Dis, 8, 10.1038/cddis.2017.495
Bernardo, 2016, Sex differences in response to miRNA-34a therapy in mouse models of cardiac disease: identification of sex-, disease-and treatment-regulated miRNAs, J Physiol, 594, 5959, 10.1113/JP272512
Hou, 2013, Inhibitory effect of microRNA-34a on retinal pigment epithelial cell proliferation and migration, Invest Ophthalmol Vis Sci, 54, 6481, 10.1167/iovs.13-11873
American Diabetes Association, 2014, Diagnosis and classification of diabetes mellitus, Diabetes Care, 37, S81, 10.2337/dc14-S081
Inzucchi, 2015, Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes, Diabetes Care, 38, 140, 10.2337/dc14-2441
Sniderman, 2003, Triglycerides and small dense LDL: the twin Achilles heels of the Friedewald formula, Clin Biochem, 36, 499, 10.1016/S0009-9120(03)00117-6
Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method, Methods, 25, 402, 10.1006/meth.2001.1262
Kramer, 2011, Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies, Diabetes Care, 34, 1238, 10.2337/dc11-0079
Sena, 2013, Endothelial dysfunction—a major mediator of diabetic vascular disease, Biochim Biophys Acta, 1832, 2216, 10.1016/j.bbadis.2013.08.006
Joussen, 2004, A central role for inflammation in the pathogenesis of diabetic retinopathy, FASEB J, 18, 1450, 10.1096/fj.03-1476fje
Dasbach, 1991, Cost-effectiveness of strategies for detecting diabetic retinopathy, Med Care, 29, 20, 10.1097/00005650-199101000-00003
Cortez, 2011, MicroRNAs in body fluids—the mix of hormones and biomarkers, Nat Rev Clin Oncol, 8, 467, 10.1038/nrclinonc.2011.76
Feng, 2011, miR-146a–mediated extracellular matrix protein production in chronic diabetes complications, Diabetes, 60, 2975, 10.2337/db11-0478
Lee, 2017, Absence of miR-146a in podocytes increases risk of diabetic glomerulopathy via up-regulation of ErbB4 and Notch-1, J Biol Chem, 292, 732, 10.1074/jbc.M116.753822
Yousefzadeh, 2015, Deregulation of NF-кB–miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy, J Physiol Biochem, 71, 51, 10.1007/s13105-014-0378-4
Kato, 2012, MicroRNAs and the glomerulus, Exp Cell Res, 318, 993, 10.1016/j.yexcr.2012.02.034
Liang, 2009, MicroRNA: a new frontier in kidney and blood pressure research, Am J Physiol Renal Physiol, 297, F553, 10.1152/ajprenal.00045.2009
Tang, 2011, Inflammation in diabetic retinopathy, Prog Retin Eye Res, 30, 343, 10.1016/j.preteyeres.2011.05.002
Tomić, 2013, The role of inflammation and endothelial dysfunction in the pathogenesis of diabetic retinopathy, Coll Antropol, 37, 51
Usui-Ouchi, 2016, Upregulation of Mir-21 levels in the vitreous humor is associated with development of proliferative vitreoretinal disease, PloS One, 11, 10.1371/journal.pone.0158043
Chen, 2017, Pathogenic role of microRNA-21 in diabetic retinopathy through downregulation of PPARα, Diabetes, 66, 1671, 10.2337/db16-1246
Lai, 2015, MicroRNA-21 in glomerular injury, J Am Soc Nephrol, 26, 805, 10.1681/ASN.2013121274
Lin, 2017, MiR-34a contributes to diabetes-related cochlear hair cell apoptosis via SIRT1/HIF-1α signaling, Gen Comp Endocrinol, 246, 63, 10.1016/j.ygcen.2017.02.017
Shen, 2017, miR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus, Exp Ther Med, 14, 5589
Banerjee, 2017, MicroRNA regulation of oxidative stress, Oxid Med Cell Longev, 2017, 2872156, 10.1155/2017/2872156
Zhang, 2017, MiR-34a/sirtuin-1/foxo3a is involved in genistein protecting against ox-LDL-induced oxidative damage in HUVECs, Toxicol Lett, 277, 115, 10.1016/j.toxlet.2017.07.216
Thounaojam, 2019, MicroRNA-34a (miR-34a) mediates retinal endothelial cell premature senescence through mitochondrial dysfunction and loss of antioxidant activities, Antioxidants, 8, 328, 10.3390/antiox8090328
Lovis, 2008, Alterations in microRNA expression contribute to fatty acid–induced pancreatic β-cell dysfunction, Diabetes, 57, 2728, 10.2337/db07-1252
Nesca, 2013, Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes, Diabetologia, 56, 2203, 10.1007/s00125-013-2993-y
Badrichani, 1999, Bcl-2 and Bcl-x L serve an anti-inflammatory function in endothelial cells through inhibition of NF-κB, J Clin Invest, 103, 543, 10.1172/JCI2517
Klibanov, 2001, Accumulation of soluble and nucleolar-associated p53 proteins following cellular stress, J Cell Sci, 114, 1867, 10.1242/jcs.114.10.1867
Miyashita, 1995, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, 80, 293, 10.1016/0092-8674(95)90412-3