MicroRNA-mediated mechanism of vitamin D regulation of innate immune response

Yan Chun Li1, Yunzi Chen1, Weicheng Liu1, Ravi Thadhani2
1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL 60637, USA
2Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

Tài liệu tham khảo

Haussler, 2013, Molecular mechanisms of vitamin D action, Calcif. Tissue Int., 92, 77, 10.1007/s00223-012-9619-0 Bouillon, 2008, Vitamin D and human health: lessons from vitamin D receptor null mice, Endocr. Rev., 29, 726, 10.1210/er.2008-0004 Mora, 2008, Vitamin effects on the immune system: vitamins A and D take centre stage, Nat. Rev. Immunol., 8, 685, 10.1038/nri2378 Hart, 2011, Modulation of the immune system by UV radiation: more than just the effects of vitamin D, Nat. Rev. Immunol., 11, 584, 10.1038/nri3045 Liu, 2006, Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response, Science, 311, 1770, 10.1126/science.1123933 Wang, 2004, Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression, J. Immunol., 173, 2909, 10.4049/jimmunol.173.5.2909 Gombart, 2005, Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3, FASEB J., 19, 1067, 10.1096/fj.04-3284com Gurlek, 2002, Modulation of growth factor/cytokine synthesis and signaling by 1α,25-dihydroxyvitamin D(3): implications in cell growth and differentiation, Endocr. Rev., 23, 763, 10.1210/er.2001-0044 Etten, 2005, Immunoregulation by 1,25-dihydroxyvitamin D(3): basic concepts, J. Steroid Biochem. Mol. Biol., 97, 93, 10.1016/j.jsbmb.2005.06.002 Chen, 2013, 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages, J. Immunol., 190, 3687, 10.4049/jimmunol.1203273 Bartel, 2004, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281, 10.1016/S0092-8674(04)00045-5 Zamore, 2005, Ribo-gnome: the big world of small RNAs, Science, 309, 1519, 10.1126/science.1111444 Winter, 2009, Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat. Cell Biol., 11, 228, 10.1038/ncb0309-228 Tam, 1997, bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA, Mol. Cell. Biol., 17, 1490, 10.1128/MCB.17.3.1490 Tam, 2001, Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA, Gene, 274, 157, 10.1016/S0378-1119(01)00612-6 Thai, 2007, Regulation of the germinal center response by microRNA-155, Science, 316, 604, 10.1126/science.1141229 Haasch, 2002, T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC, Cell Immunol., 217, 78, 10.1016/S0008-8749(02)00506-3 O’Connell, 2007, MicroRNA-155 is induced during the macrophage inflammatory response, Proc. Natl. Acad. Sci. USA, 104, 1604, 10.1073/pnas.0610731104 Ceppi, 2009, MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells, Proc. Natl. Acad. Sci. USA, 106, 2735, 10.1073/pnas.0811073106 O’Connell, 2008, Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder, J. Exp. Med., 205, 585, 10.1084/jem.20072108 Rodriguez, 2007, Requirement of bic/microRNA-155 for normal immune function, Science, 316, 608, 10.1126/science.1139253 Eis, 2005, Accumulation of miR-155 and BIC RNA in human B cell lymphomas, Proc. Natl. Acad. Sci. USA, 102, 3627, 10.1073/pnas.0500613102 Kluiver, 2005, BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas, J. Pathol., 207, 243, 10.1002/path.1825 Costinean, 2006, Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice, Proc. Natl. Acad. Sci. USA, 103, 7024, 10.1073/pnas.0602266103 Biswas, 2009, Endotoxin tolerance: new mechanisms, molecules and clinical significance, Trends Immunol., 30, 475, 10.1016/j.it.2009.07.009 Koeffler, 1985, gamma-Interferon stimulates production of 1,25-dihydroxyvitamin D3 by normal human macrophages, Biochem. Biophys. Res. Commun., 127, 596, 10.1016/S0006-291X(85)80202-3 Reichel, 1987, Synthesis in vitro of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 by interferon-gamma-stimulated normal human bone marrow and alveolar macrophages, J. Biol. Chem., 262, 10931, 10.1016/S0021-9258(18)60906-8 Ziegler-Heitbrock., 1995, Molecular mechanism in tolerance to lipopolysaccharide, J. Inflamm., 45, 13 Yoshimura, 2007, SOCS proteins, cytokine signalling and immune regulation, Nat. Rev. Immunol., 7, 454, 10.1038/nri2093 Alexander, 2002, Suppressors of cytokine signalling (SOCS) in the immune system, Nat. Rev. Immunol., 2, 410, 10.1038/nri818 Kinjyo, 2002, SOCS1/JAB is a negative regulator of LPS-induced macrophage activation, Immunity, 17, 583, 10.1016/S1074-7613(02)00446-6 Nakagawa, 2002, SOCS-1 participates in negative regulation of LPS responses, Immunity, 17, 677, 10.1016/S1074-7613(02)00449-1 Fujimoto, 2003, Regulation of cytokine signaling by SOCS family molecules, Trends Immunol., 24, 659, 10.1016/j.it.2003.10.008 Akira, 2004, Toll-like receptor signalling, Nat. Rev. Immunol., 4, 499, 10.1038/nri1391 Androulidaki, 2009, The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs, Immunity, 31, 220, 10.1016/j.immuni.2009.06.024 O’Neill, 2011, MicroRNAs: the fine-tuners of Toll-like receptor signalling, Nat. Rev. Immunol., 11, 163, 10.1038/nri2957 O’Connell, 2010, Physiological and pathological roles for microRNAs in the immune system, Nat. Rev. Immunol., 10, 111, 10.1038/nri2708 Crespo, 2000, Indirect induction of suppressor of cytokine signalling-1 in macrophages stimulated with bacterial lipopolysaccharide: partial role of autocrine/paracrine interferon-alpha/beta, Biochem. J., 349, 99, 10.1042/0264-6021:3490099 Gatto, 2008, Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway, Nucleic Acids Res., 36, 6608, 10.1093/nar/gkn666 Bonizzi, 2004, The two NF-kappaB activation pathways and their role in innate and adaptive immunity, Trends Immunol., 25, 280, 10.1016/j.it.2004.03.008 Nakanishi, 2005, Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs, Nat. Rev. Cancer, 5, 297, 10.1038/nrc1588 Sun, 2006, Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor, Am. J. Physiol. Endocrinol. Metab., 291, E315, 10.1152/ajpendo.00590.2005 Zhang, 2007, 1,25-Dihydroxyvitamin D(3) targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells, Kidney Int., 72, 193, 10.1038/sj.ki.5002296 Chen, 2013, Vitamin D receptor inhibits nuclear factor kappaB activation by interacting with IkappaB kinase beta protein, J. Biol. Chem., 288, 19450, 10.1074/jbc.M113.467670 Palmer, 2001, Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling, J. Cell Biol., 154, 369, 10.1083/jcb.200102028 Yuan, 2007, 1,25-Dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter, J. Biol. Chem., 282, 29821, 10.1074/jbc.M705495200 Loftus, 2002, Epidemiology of inflammatory bowel disease, Gastroenterol. Clin. North Am., 31, 1, 10.1016/S0889-8553(01)00002-4 Loftus, 2004, Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences, Gastroenterology, 126, 1504, 10.1053/j.gastro.2004.01.063 Lim, 2005, Mechanisms of Disease: vitamin D and inflammatory bowel disease, Nat. Clin. Pract. Gastroenterol. Hepatol., 2, 308, 10.1038/ncpgasthep0215 Gombart, 2009, Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis, Clin. Infect. Dis., 48, 418, 10.1086/596314 Costinean, 2009, Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice, Blood, 114, 1374, 10.1182/blood-2009-05-220814 O’Connell, 2009, Inositol phosphatase SHIP1 is a primary target of miR-155, Proc. Natl. Acad. Sci. USA, 106, 7113, 10.1073/pnas.0902636106