MicroRNA trong ung thư phổi - một phương pháp tiềm năng mới cho chẩn đoán sớm và điều trị

Journal of Applied Genetics - Tập 64 Số 3 - Trang 459-477 - 2023
Magdalena Frydrychowicz1, Łukasz Kuszel2, Grzegorz Dworacki1, Joanna Budna‐Tukan3
1Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806, Poznan, Poland
2Department of Medical Genetics, Poznan University of Medical Sciences, 60-806, Poznan, Poland
3Department of Histology and Embryology, Poznan University of Medical Sciences, 61-781, Poznan, Poland

Tóm tắt

Tóm tắt

Ung thư phổi là nguyên nhân phổ biến nhất dẫn đến tử vong liên quan đến ung thư trên toàn thế giới. Một trong những lý do cho dự đoán xấu và tỷ lệ tử vong cao ở bệnh nhân ung thư phổi là chẩn đoán bệnh ở giai đoạn muộn. Mặc dù có nhiều phương pháp chẩn đoán đổi mới và nhiều thử nghiệm lâm sàng đã hoàn thành và đang diễn ra nhằm cải thiện liệu pháp, không có sự gia tăng đáng kể nào trong sự sống sót lâu dài của bệnh nhân được ghi nhận trong vài thập kỷ qua. Bệnh nhân chắc chắn sẽ hưởng lợi từ việc phát hiện sớm ung thư phổi. Do đó, việc tìm kiếm các dấu ấn sinh học mới có thể giúp dự đoán kết quả và phản ứng của khối u là điều cần thiết để tối đa hóa hiệu quả điều trị và tránh việc điều trị thừa hoặc thiếu cho bệnh nhân ung thư phổi. Ngày nay, sự chú ý của các nhà khoa học chủ yếu tập trung vào cái gọi là sinh thiết lỏng, một phương pháp hoàn toàn không xâm lấn và dễ dàng tiếp cận dựa trên việc lấy máu đơn giản. Giữa các yếu tố sinh thiết lỏng phổ biến, axit nucleic khối u lưu thông xứng đáng được đề cập. Các dấu ấn sinh học di truyền biểu sinh, đặc biệt là biểu hiện miRNA, có một số đặc điểm riêng biệt khiến chúng trở thành các dấu ấn dự đoán đầy hứa hẹn. Trong bài đánh giá này, chúng tôi đã mô tả sự tham gia của miRNA trong quá trình hình thành khối u và trình bày nó như một yếu tố dự đoán sự phát triển và tiến triển của ung thư, chỉ số tiềm năng của hiệu quả điều trị và quan trọng nhất là mục tiêu điều trị đầy hứa hẹn.

Từ khóa

#ung thư phổi #sinh thiết lỏng #miRNA #dấu ấn sinh học di truyền biểu sinh #chẩn đoán sớm #hiệu quả điều trị

Tài liệu tham khảo

Wu K-L, Tsai Y-M, Lien C-T, Kuo et al (2019a) The roles of MicroRNA in lung cancer. Int J Sci 20:1611. https://doi.org/10.3390/ijms20071611

Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953. https://doi.org/10.1002/ijc.31937

Lemjabbar-Alaoui H, Hassan O, Yang Y-W, Buchanan P (2015) Lung cancer: biology and treatment options. Biochim Biophys Acta 1856(2):189–210. https://doi.org/10.1016/j.bbcan.2015.08.002

Larrea E, Sole C, Manterola L, Goicoechea I (2016) New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies. Int J Mol Sci 17:627. https://doi.org/10.3390/ijms17050627

Weiss CN, Ito KA (2017) Macro View of MicroRNAs: The discovery of MicroRNAs and their role in hematopoiesis and hematologic disease. Int Rev Cell Mol Biol 334:99–175. https://doi.org/10.1016/bs.ircmb.2017.03.007

Loh H-Y, Norman BP, Lai K-S et al (2019) Regulatory role of MicroRNAs in breast cancer. Int J Mol Sci 20:4940. https://doi.org/10.3390/ijms20194940

Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141

Bhaskaran M, Mohan M (2014) MicroRNAs: History, Biogenesis, and their evolving role in animal development and disease. Vet Pathol 51(4):759–774. https://doi.org/10.1177/0300985813502820

Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419. https://doi.org/10.1038/nature01957

Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016. https://doi.org/10.1101/gad.1158803

Macrae I, Zhou K, Li F et al (2006) Structural basis for double-stranded RNA processing by Dicer. Science 5758:195–198. https://doi.org/10.1126/science.1121638

Liu J, Carmell MA, Rivasv FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441. https://doi.org/10.1126/science.1102513

Hutvagner G, Simard MJ (2008) Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32. https://doi.org/10.1038/nrm2321

Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138. https://doi.org/10.1038/nrd2742

Lampignanoa R, Klotena V, Krahna T, Schlangea T (2020) Integrating circulating miRNA analysis in the clinical management of lung cancer: Present or future? Mol Aspects of Med 72:100844. https://doi.org/10.1016/j.mam.2020.100844

Kloten V, Neumann MHD, Di Pasquale F et al (2019) Multicentric evaluation of circulating plasma MicroRNA extraction technologies for the development of clinically feasible reverse transcription quantitative PCR and next-generation sequencing analytical work flows. Clin Chem 65(9):1132–1140. https://doi.org/10.1373/clinchem.2019.303271

Lu S, Kong H, Hou Y et al (2018a) Two plasma microRNA panels for diagnosis and subtype discrimination of lung cancer. Lung Cancer 123:44–51. https://doi.org/10.1016/j.lungcan.2018.06.027

Pozniak T, Shcharbin D, Bryszewska M (2022) Circulating microRNAs in Medicine. Int J Mol Sci 23:3996. https://doi.org/10.3390/ijms23073996

Mahjoob G, Ahmadi Y, Fatima Rajani H et al (2022) Circulating microRNAs as predictive biomarkers of coronary artery diseases in type 2 diabetes patients. Clin Lab Anal e24380. https://doi.org/10.1002/jcla.24380

Montecalvo A, Larregina AT, Shufesky WJ et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766. https://doi.org/10.1182/blood-2011-02-338004

Nakamura K, Sawada K, Yoshimura A et al (2016) Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer 15:48. https://doi.org/10.1186/s12943-016-0536-0

Precazzini F, Detassis S, Imperatori AS, eta al, (2021) Measurements methods for the development of MicroRNA-based tests for cancer diagnosis. Int J Mol Sci 22:1176. https://doi.org/10.3390/ijms22031176

Zhou Q, Huang S-X, Zhang F et al (2017) MicroRNAs: A novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif 50:e12394. https://doi.org/10.1111/cpr.12394

Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetic in human disease and prospects for epigenetic therapy. Nature 429:457–463. https://doi.org/10.1038/nature02625

Negrini M, Nicoloso MS, Calin GA (2009) MicroRNAs and cancer–new paradigms in molecular oncology. Curr Opin Cell Biol 21:470–479. https://doi.org/10.1016/j.ceb.2009.03.002

Ganju A, Khan S, Hafeez BB et al (2017) miRNA nanotherapeutics for cancer. Drug Discov Today 22:424–432. https://doi.org/10.1016/j.drudis.2016.10.014

De Palma FDE, Salvatore F, Pol JG et al (2022) Circular RNAs as potential biomarkers in breast cancer. Biomedicines 10:725. https://doi.org/10.3390/biomedicines10030725

Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–222. https://doi.org/10.1146/annurev.pathol.4.110807.092222

Shao X, Huang P, Shi L et al (2019) MicroRNA and LncRNA expression profiles in human estrogen receptor positive breast cancer. Clin. Lab 65. https://doi.org/10.7754/Clin.Lab.2018.180340

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

Langevin SM, Kratzke RA, Kelsey KT (2015) Epigenetics of lung cancer. Transl Res 165(1):74–90. https://doi.org/10.1016/j.trsl.2014.03.001

Guan P, Yin Z, Li X et al (2012) Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues. J Exp Clin Cancer Res 31:54. https://doi.org/10.1186/1756-9966-31-54

Vosa U, Vooder T, Kolde R et al (2013) Meta-analysis of microRNA expression in lung cancer. Int J Cancer 132:2884–2893. https://doi.org/10.1002/ijc.27981

Wang Q, Wu L, Yu J (2022) Comparison of tumor and two types of paratumoral tissues highlighted epigenetic regulation of transcription during feld cancerization in non-small cell lung cancer. BMC Med Genomics 15(1):66. https://doi.org/10.1186/s12920-022-01192-1

Cao J, Song Y, Bi N et al (2013) DNA methylation-mediated repression of miR-886–3p predicts poor outcome of human small cell lung cancer. Cancer Res 73:3326–3335. https://doi.org/10.1158/0008-5472

Heller G, Altenberger C, Steiner I et al (2018) DNA methylation of microRNA-coding genes in non-small-cell lung cancer patients. J Pathol 245:387–398. https://doi.org/10.1002/path.5079

Kitano K, Watanabe K, Emoto N et al (2011) CpG island methylation of microRNAs is associated with tumor size and the recurrence of non-small cell lung cancer. Cancer Sci 102:2126–2131. https://doi.org/10.1111/j.1349-7006.2011.02101.x

Watanabe K, Emoto N, Hamano E et al (2012) Genome structure-based screening identified epigenetically silenced microRNA associated with invasiveness in non-small-cell lung cancer. Int J Cancer 130(11):2580–2590. https://doi.org/10.1002/ijc.26254

Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105:13556–13561. https://doi.org/10.1073/pnas.0803055105

Kim YH, Lee WK, Lee EB et al (2017a) Combined effect of metastasisrelated microRNA, miR-34 and miR-124 family, methylation on prognosis of non-small-cell lung cancer. Clin Lung Cancer 18:e13–e20. https://doi.org/10.1016/j.cllc.2016.06.005

Tellez CS, Juri DE, Do K et al (2016) miR-196b is epigenetically silenced during the premalignant stage of lung carcinogenesis. Cancer Res 76:4741–4751. https://doi.org/10.1158/0008-5472.CAN-15-3367

Heller G, Weinzierl M, Noll C et al (2012) Genome-wide miRNA expression profiling identifies miR-9–3 and miR-193a as targets for DNA methylation in non-small cell lung cancers. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-11-2450

Brueckner B, Stresemann C, Kuner R, al, (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–1423. https://doi.org/10.1158/0008-5472.CAN-06-4074

Zhong S, Golipon H, Zardo P et al (2021) miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 230:164–196. https://doi.org/10.1016/j.trsl.2020.11.012

Azizi MIHN, Othman I, Naidu R (2021) The Role of MicroRNAs in Lung Cancer Metabolism. Cancers 13(7):1716. https://doi.org/10.3390/cancers13071716

Pandey M, Mukhopadhyay A,Sharawat SK et al (2021) Role of microRNAs in regulating cell proliferation, metastasis and chemoresistance and their applications as cancer biomarkers in small cell lung cancer. Biochim Biophys. Acta Rev Cancer. https://doi.org/10.1016/j.bbcan.2021.188552

Zhao H, Zhu L, Jin Y, Ji H et al (2012) miR-375 is highly expressed and possibly transactivated by achaete-scute complex homolog 1 in small-cell lung cancer cells. Acta Biochim Biophys Sin 44:177–182. https://doi.org/10.1093/abbs/gmr110

Nishikawa E, Osada H, Okazaki Y, Arima Ch et al (2011) miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res 71(19):6165–6173. https://doi.org/10.1158/0008-5472.CAN-11-1020

Mizuno K, Mataki H, Atsushi T et al (2017) The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. J Hum Genet 62(7):671–678. https://doi.org/10.1038/jhg.2017.27

Naidu S, Garofalo M (2015) microRNAs: an emerging paradigm in lung cancer chemoresistance. Front Med 4(2):77. https://doi.org/10.3389/fmed.2015.00077

Wu S-G, Chang T-H, Liu Y-N et al (2019b) MicroRNA in lung cancer metastasis. Cancers 11(2):265. https://doi.org/10.3390/cancers11020265

Zhao W, Hu JX, Hao RM et al (2018) Induction of microRNA-let-7a inhibits lung adenocarcinoma cell growth by regulating cyclin D1. Oncol Rep 40(4):1843–1854. https://doi.org/10.3892/or.2018.6593

Karube Y, Tanaka H, Osada H et al (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115. https://doi.org/10.1111/j.1349-7006.2005.00015.x

Jeong HC, Kim EK, Lee JH et al (2011) Aberrant expression of let-7a miRNA in the blood of non-small cell lung cancer patients. Mol Med Rep 4(2):383–387. https://doi.org/10.3892/mmr.2011.430

Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 MicroRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756. https://doi.org/10.1158/0008-5472.CAN-04-0637

Kumar MS, Erkeland SJ, Pester RE et al (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 105(10):3903–3908. https://doi.org/10.1073/pnas.0712321105

Shen Ch, Li J, Che G (2020) Prognostic value of let-7 in lung cancer: systematic review and meta-analysis. Transl Cancer Res 9(10):6354–6361. https://doi.org/10.21037/tcr-20-1240

Xia XM, Jin WY, Shi RZ et al (2010) Clinical significance and the correlation of expression between Let-7 and K-ras in non-small cell lung cancer. Oncol Lett 1(6):1045–1047. https://doi.org/10.3892/ol.2010.164

Nadal E, Zhong J, Lin J et al (2014) A microRNA cluster at 14q32 drives aggressive lung adenocarcinoma. Clin Cancer Res 20:3107–3117. https://doi.org/10.1158/1078-0432.CCR-13-3348

Xiang Q, Tang H, Yu J et al (2013) MicroRNA-98 sensitizes cisplatin-resistant human lung adenocarcinoma cells by up-regulation of HMGA2. Pharmazie 68(4):274–281

Bommer GT, Gerin I, Feng Y et al (2007) P53-mediated activation of miRNA34 candidate tumorsuppressor genes. Curr Biol 17(15):1298–307. https://doi.org/10.1016/j.cub.2007.06.068

Hurteau G, Carlson A, Spivack AC et al (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67(17):7972–7976. https://doi.org/10.1158/0008-5472

Jiang L, Huang Q, Zhang S et al (2010) Has-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer 10:318. https://doi.org/10.1186/1471-2407-10-318

Li X, Yu Z, Li Y et al (2015) The tumor suppressor miR-124 inhibits cell proliferation by targeting STAT3 and functions as a prognostic marker for postoperative NSCLC patients. Int J Oncol 46(2):798–808. https://doi.org/10.3892/ijo.2014.2786

Rhim J, Baek W, Seo Y et al (2022) From molecular mechanism to therapeutics: understanding microRNA-21 in cancer. Cells 11(18):2791. https://doi.org/10.3390/cells11182791

Zhou Y, Guo D, Zhang Y (2020) Association of MicroRNA-21 with p53 at Mutant Sites R175H and R248Q, Clinicopathological Features, and Prognosis of NSCLC. Mol Ther Oncolytics 19:208–217. https://doi.org/10.1016/j.omto.2020.10.005

Xu Z, Liu X, Wang H et al (2018) Lung adenocarcinoma cell-derived exosomal miR-21 facilitates osteoclastogenesis. Gene 666:116–122. https://doi.org/10.1016/j.gene.2018.05.008

Singh M, Garg N, Venugopal C et al. (2015) STAT3 pathway regulates lung-derived brain metastasis initiating cell capacity through miR-21 activation. Oncotarget 6(29):27461–27477.https://doi.org/10.18632/oncotarget.4742

Guo Q, Zhang H, Zhang L et al (2015) MicroRNA-21 regulates non-small cell lung cancer cell proliferation by affecting cell apoptosis via COX-19. Int J Clin Exp Med 8(6):8835–8841

Faversani A, Amatori S, Augello C et al (2017) miR-494–3p is a novel tumor driver of lung carcinogenesis. Oncotarget 8:7231–7247. https://doi.org/10.18632/oncotarget.13933

Thakur MK, Gadgeel SM (2016) Predictive and prognostic biomarkers in non-small cell lung cancer. Semin Resp Crit Care 37:760–770. https://doi.org/10.1055/s-0036-1592337

Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. https://doi.org/10.1038/nature03702

Lawrie CH, Soneji S, Marafioti T et al (2007) MicroRNA expression distinguishes between germinal center B cell–like and activated B cell–like subtypes of diffuse large B cell lymphoma. Int J Cancer 121:1156–1161. https://doi.org/10.1002/ijc.22800

Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518. https://doi.org/10.1073/pnas.0804549105

Cortez MA, Bueso-Ramos C, Ferdin J et al (2011) MicroRNAs in body fluids—The mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477. https://doi.org/10.1038/nrclinonc.2011.76

Mo MH, Chen L, Fu Y et al (2012) Cell-free circulating miRNA biomarkers in Cancer. J Cancer 3:432–448. https://doi.org/10.7150/jca.4919

Han Y, Li H (2018) miRNAs as biomarkers and for the early detection of non-small cell lung cancer (NSCLC). J Thorac Dis 10:3119–313. https://doi.org/10.21037/jtd.2018.05.32

Montani F, Marzi MJ, Dezi F et al (2015) miR-Test: A blood test for lung cancer early detection. J Natl Cancer Inst 107:djv063. https://doi.org/10.1093/jnci/djv063

Sozzi G, Boeri M. Rossi M et al (2014) Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: A correlative MILD trial study. J Clin Oncol 32:768–77. https://doi.org/10.1200/JCO.2013.50.4357

Bishop JA, Benjamin H, Cholakh H et al (2010) Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res 16:610–619. https://doi.org/10.7314/APJCP.2014.15.2.577

Gyoba J, Shan S, Roa W, Bedard EL (2016) Diagnosing lung cancers through examination of micro-RNA biomarkers in blood, plasma, serum and sputum: a review and summary of current literature. Int J Mol Sci 17:494. https://doi.org/10.3390/ijms17040494

Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89. https://doi.org/10.1038/35040556

Lebanony D, Benjamin H, Si G et al (2009) Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 27:2030–2037. https://doi.org/10.1200/JCO.2008.19.4134

Zhang YK, Zhu WY, He JY et al (2012) miRNAs expression profiling to distinguish lung squamous-cell carcinoma from adenocarcinoma subtypes. J Cancer Res Clin Oncol 138:1641–1650. https://doi.org/10.1007/s00432-012-1240-0

Demes M, Aszyk C, Bartschc H, Fisseler-Eckhoff A (2016) Differential miRNA-expression as an adjunctive diagnostic tool in neuroendocrine tumors of the lung. Cancers 8:3. https://doi.org/10.3390/cancers8040038

Barshack I, Lithwick-Yanai G, Afek A et al (2010) MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathology 206:578–584

Kim J, Lim NJ, Jang SG et al (2014) miR-592 and miR-552 can distinguish between primary lung adenocarcinoma and colorectal cancer metastases in the lung. Anticancer Res 34:2297–2302

Lu J, Zhan Y, Feng J et al (2018b) MicroRNAs associated with therapy of non-small cell lung cancer. Int J Biol Sci 14:390–397. https://doi.org/10.7150/ijbs.22243

Backes C, Ludwig N, Leidinger P et al (2016) Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: known and novel signaling cascades. Oncotarget 7:71514–71525. https://doi.org/10.18632/oncotarget.11723

Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789. https://doi.org/10.1038/nrd3179

Kasinsk AL, Slack FJ (2011) Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11:849–864. https://doi.org/10.1038/nrc3166

Yu S, Qin X, Chen T et al (2017) MicroRNA-106b-5p regulates cisplatin chemosensitivity by targeting polycystic kidney disease-2 in non-small-cell lung cancer. Anticancer Drugs 28:852–860. https://doi.org/10.1097/CAD.0000000000000524

Wu Y, Guo L, Liu J et al (2014) The reversing and molecular mechanisms of miR-503 on the drug-resistance to cisplatin in A549/DDP cells. Zhongguo Fei Ai Za Zhi 17:1–7. https://doi.org/10.3779/j.issn.1009-3419.2014.01.01

Li JH, Luo N, Zhong MZ et al (2016) Inhibition of microRNA-196a might reverse cisplatin resistance of A549/DDP non-small-cell lung cancer cell line. Tumour Biol 37:2387–2394. https://doi.org/10.1007/s13277-015-4017-7

Zhao Z, Zhang L, Yao Q, Tao Z (2015) miR-15b regulates cisplatin resistance and metastasis by targeting PEBP4 in human lung adenocarcinoma cells. Cancer Gene Ther 22:108–114. https://doi.org/10.1038/cgt.2014.73

Chen X, Xu Y, Liao X et al (2016) Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer. Tumour Biol 37:11927–11936. https://doi.org/10.1007/s13277-016-5052-8

Cortez MA, Valdecanas D, Zhang X et al (2014) Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther J Am Soc Gene Ther 22:1494–1503. https://doi.org/10.1038/mt.2014.79

Pardol DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135. https://doi.org/10.1056/NEJMoa1504627

Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639. https://doi.org/10.1056/NEJMoa1507643

Suzuki HI, Katsura A, Matsuyama H et al (2015) MicroRNA regulons in tumor microenvironment. Oncogene 34:3085–3094. https://doi.org/10.1038/onc.2014.254

Kuninty PR, Schnitter J, Storm G et al (2016) MicroRNA targeting to modulate tumor microenvironment. Front Oncol 6:3. https://doi.org/10.3389/fonc.2016.00003

Halvorsen AR, Sandhu V, Sprauten M et al (2018) Circulating microRNAs associated with prolonged overall survival in lung cancer patients treated with nivolumab. Acta Oncol 57:1225–1231. https://doi.org/10.1080/0284186X.2018.1465585

Garofalo M, Romano G, Di Leva G et al (2011) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18:74–82. https://doi.org/10.1038/nm.2577

Shen H, Zhu F, Liu J et al (2014) Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer. PLoS ONE 9:e103305. https://doi.org/10.1371/journal.pone.0103305

Li B, Ren S, Li X et al (2014) MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer 83:146–153. https://doi.org/10.1016/j.lungcan.2013.11.003

Bisagni A, Pagano M, Maramotti S et al (2018) Higher expression of miR-133b is associated with better efficacy of erlotinib as the second or third line in non-small cell lung cancer patients. PLoS ONE 13:e0196350. https://doi.org/10.1371/journal.pone.0196350

Wang YS, Wang YH, Xia H P et al (2012) MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev APJCP 13:255–60. https://doi.org/10.7314/apjcp.2012.13.1.255

Zhong M, Ma X, Sun C, Chen L (2010) MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chemico-Biol Interact 184:431–8. https://doi.org/10.1016/j.cbi.2010.01.025

Kitamura K, Seike M, Okano T et al (2014) MiR-134/487b/655 cluster regulates TGF-beta-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Ther 13:444–53. https://doi.org/10.1158/1535-7163.MCT-13-0448

Cao M, Seike M, Soeno C et al (2012) MiR-23a regulates TGFbeta-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol 41:869–75. https://doi.org/10.3892/ijo.2012.1535.

Cufi S, Bonavia R, Vazquez-Martin A et al (2013) Silibinin suppresses EMT-driven erlotinib resistance by reversing the high miR-21/low miR-200c signature in vivo. Sci Rep 3:2459. https://doi.org/10.1038/srep02459

Bryant JL, Britson J, Balko JM et al (2012) A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT. Br J Cancer 106:148–156. https://doi.org/10.1038/bjc.2011.465

Shaw AT, Yeap BY, Mino-Kenudson M et al (2009) Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 27:4247–4253. https://doi.org/10.1200/JCO.2009.22.6993

Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non–small-cell lung cancer. Nature 448:561–566. https://doi.org/10.1038/nature05945

Rikova K, Guo A, Zeng Q et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203. https://doi.org/10.1016/j.cell.2007

Chiarle R, Voena C, Ambrogio C et al (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8:11–23. https://doi.org/10.1038/nrc2291

Soda M, Takada S, Takeuchi K et al (2008) A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci USA 105:19893–19897. https://doi.org/10.1073/pnas.0805381105

Koivunen JP, Mermel C, Zejnullahu K et al (2008) (2008) EML4- ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 14:4275–4283. https://doi.org/10.1158/1078-0432.CCR-08-0168

Kim H, Yang JM, Jin Y et al (2017b) MicroRNA expression profiles and clinicopathological implications in lung adenocarcinoma according to EGFR, KRAS, and ALK status. Oncotarget 8 8484–8498. https://doi.org/10.18632/oncotarget.14298

Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703. https://doi.org/10.1056/NEJMoa1006448

Shaw AT, Kim DW, Nakagawa K et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368:2385–2394. https://doi.org/10.1056/NEJMoa1214886

Li LL, Qu LL, Fu HJ et al (2017) Circulating microRNAs as novel biomarkers of ALK-positive nonsmall cell lung cancer and predictors of response to crizotinib therapy. Oncotarget 8:45399–45414. https://doi.org/10.18632/oncotarget.17535

Yun MR, Lim SM, Kim SK et al (2018) Enhancer remodeling and MicroRNA alterations are associated with acquired resistance to ALK inhibitors. Cancer Res 78:3350–3362. https://doi.org/10.1158/0008-5472.CAN-17-3146

Fortunato O, Boeri M, Verri C et al (2014) Therapeutic use of microRNAs in lung cancer. Biomed Res Int 2014:756975. https://doi.org/10.1155/2014/756975

El Sayed SR, Cristante J, Guyon L et al (2021) MicroRNA therapeutics in cancer: current advances and challenges. Cancers 13(11):2680. https://doi.org/10.3390/cancers13112680

Home—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ (accessed on 30 November 2022)

Reid G, Kao SC, Pavlakis N et al (2016) Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8(8):1079–1085. https://doi.org/10.2217/epi-2016-0035

van Zandwijk N, Pavlakis N, Kao SC et al (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, doseescalation study. Lancet Oncol 18(10):1386–1396. https://doi.org/10.1016/S1470-2045(17)30621-6

Agostini M, Knight RA (2014) miR-34: From bench to bedside. Oncotarget 5(4):872–881. https://doi.org/10.18632/oncotarget.1825

Hong DS, Kang YK, Borad M et al (2020) Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer 122(11):1630–1637. https://doi.org/10.1038/s41416-020-0802-1