MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis

Nature Genetics - Tập 40 Số 3 - Trang 290-298 - 2008
Johann K. Eberhart1, Xinjun He1, Mary E. Swartz1, Yi‐Lin Yan1, Hao Song1, Taylor C. Boling1, Allison K. Kunerth1, Macie B. Walker2, Charles B. Kimmel1, John H. Postlethwait1
1Institute of Neuroscience, 1254 University of Oregon, Eugene, USA
2Present address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA.,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Osumi-Yamashita, N., Ninomiya, Y., Doi, H. & Eto, K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev. Biol. 164, 409–419 (1994).

Trainor, P.A., Melton, K.R. & Manzanares, M. Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int. J. Dev. Biol. 47, 541–553 (2003).

Wada, N. et al. Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development 132, 3977–3988 (2005).

Eberhart, J.K., Swartz, M.E., Crump, J.G. & Kimmel, C.B. Early Hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development. Development 133, 1069–1077 (2006).

Trainor, P.A. & Krumlauf, R. Hox genes, neural crest cells and branchial arch patterning. Curr. Opin. Cell Biol. 13, 698–705 (2001).

Hilliard, S.A., Yu, L., Gu, S., Zhang, Z. & Chen, Y.P. Regional regulation of palatal growth and patterning along the anterior-posterior axis in mice. J. Anat. 207, 655–667 (2005).

Roessler, E. et al. Mutations in the human sonic hedgehog gene cause holoprosencephaly. Nat. Genet. 14, 357–360 (1996).

Hu, D. & Helms, J.A. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 126, 4873–4884 (1999).

Riley, B.M. et al. Impaired FGF signaling contributes to cleft lip and palate. Proc. Natl. Acad. Sci. USA 104, 4512–4517 (2007).

Bachler, M. & Neubüser, A. Expression of members of the Fgf family and their receptors during midfacial development. Mech. Dev. 100, 313–316 (2001).

Liu, L., Chong, S.W., Balasubramaniyan, N.V., Korzh, V. & Ge, R. Platelet-derived growth factor receptor alpha (pdgfr-α) gene in zebrafish embryonic development. Mech. Dev. 116, 227–230 (2002).

Soriano, P. The PDGFα receptor is required for neural crest cell development and for normal patterning of the somites. Development 124, 2691–2700 (1997).

Tallquist, M.D. & Soriano, P. Cell autonomous requirement for PDGFRα in populations of cranial and cardiac neural crest cells. Development 130, 507–518 (2003).

Betsholtz, C., Karlsson, L. & Lindahl, P. Developmental roles of platelet-derived growth factors. Bioessays 23, 494–507 (2001).

Ding, H. et al. A specific requirement for PDGF-C in palate formation and PDGFR-α signaling. Nat. Genet. 36, 1111–1116 (2004).

Boström, H. et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85, 863–873 (1996).

Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nat. Genet. 38, S20–S24 (2006).

Lee, C.T., Risom, T. & Strauss, W.M. MicroRNAs in mammalian development. Birth Defects Res. C Embryo Today 78, 129–139 (2006).

Shalgi, R., Lieber, D., Oren, M. & Pilpel, Y. Global and local Architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput. Biol. 3, e131 (2007).

Song, L. & Tuan, R.S. MicroRNAs and cell differentiation in mammalian development. Birth Defects Res. C Embryo Today 78, 140–149 (2006).

Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

Ason, B. et al. Differences in vertebrate microRNA expression. Proc. Natl. Acad. Sci. USA 103, 14385–14389 (2006).

Darnell, D.K. et al. MicroRNA expression during chick embryo development. Dev. Dyn. 235, 3156–3165 (2006).

Tuddenham, L. et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217 (2006).

Gammill, L.S., Gonzalez, C. & Bronner-Fraser, M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Dev. Neurobiol. 67, 47–56 (2007).

McLennan, R. & Kulesa, P.M. In vivo analysis reveals a critical role for neuropilin-1 in cranial neural crest cell migration in chick. Dev. Biol. 301, 227–239 (2007).

Yu, H.H. & Moens, C. Semaphorin signaling guides cranial neural crest cell migration in zebrafish. Dev. Biol. 280, 373–378 (2005).

Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. & Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

Liu, L., Korzh, V., Balasubramaniyan, N.V., Ekker, M. & Ge, R. Platelet-derived growth factor A (pdgf-a) expression during zebrafish embryonic development. Dev. Genes Evol. 212, 298–301 (2002).

Zhang, H., Vutskits, L., Calaora, V., Durbec, P. & Kiss, J.Z. A role for the polysialic acid – neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J. Cell Sci. 117, 93–103 (2004).

Schneider, R.A. & Helms, J.A. The cellular and molecular origins of beak morphology. Science 299, 565–568 (2003).

Sadaghiani, B. & Thiebaud, C.H. Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Dev. Biol. 124, 91–110 (1987).

Osumi-Yamashita, N., Ninomiya, Y., Doi, H. & Eto, K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev. Biol. 164, 409–419 (1994).

Brugmann, S.A. et al. Wnt signaling mediates regional specification in the vertebrate face. Development 134, 3283–3295 (2007).

Orr-Urtreger, A. & Lonai, P. Platelet-derived growth factor-A and its receptor are expressed in separate, but adjacent cell layers of the mouse embryo. Development 115, 1045–1058 (1992).

Ho, L., Symes, K., Yordan, C., Gudas, L.J. & Mercola, M. Localization of PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Mech. Dev. 48, 165–174 (1994).

Tallquist, M.D., Weismann, K.E., Hellström, M. & Soriano, P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development 127, 5059–5070 (2000).

Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio) (Univ. of Oregon Press, Eugene, Oregon, USA, 1993).

Neff, M.M., Neff, J.D., Chory, J. & Pepper, A.E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).

Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

Nagel, M., Tahinci, E., Symes, K. & Winklbauer, R. Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 131, 2727–2736 (2004).

Robu, M.E. et al. p53 activation by knockdown technologies. PLos Genet. 3, e78 (2007).

Walker, M.B. & Kimmel, C.B. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech. Histochem. 82, 23–28 (2007).

Ovcharenko, I., Loots, G.G., Hardison, R.C., Miller, W. & Stubbs, L. zPicture: dynamic alignment and visualization tool for analyzing conservation profiles. Genome Res. 14, 472–477 (2004).