MicroRNA-142-3p Inhibits Chondrocyte Apoptosis and Inflammation in Osteoarthritis by Targeting HMGB1
Tóm tắt
Từ khóa
Tài liệu tham khảo
Taruc-Uy, R.L., and S.A. Lynch. 2013. Diagnosis and treatment of osteoarthritis. Primary Care 40: 821–836. vii.
Swingler, T.E., G. Wheeler, V. Carmont, H.R. Elliott, M.J. Barter, M. Abu-Elmagd, S.T. Donell, R.P. Boot-Handford, M.K. Hajihosseini, A. Munsterberg, et al. 2012. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis and Rheumatism 64: 1909–1919.
Goldring, M.B. 2012. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Therapeutic Advances in Musculoskeletal Disorders 4: 269–285.
Blanco, F.J., R. Guitian, E. Vazquez-Martul, F.J. de Toro, and F. Galdo. 1998. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis and Rheumatism 41: 284–289.
Qin, J., L. Shang, A.S. Ping, J. Li, X.J. Li, H. Yu, J. Magdalou, L.B. Chen, and H. Wang. 2012. TNF/TNFR signal transduction pathway-mediated anti-apoptosis and anti-inflammatory effects of sodium ferulate on IL-1beta-induced rat osteoarthritis chondrocytes in vitro. Arthritis Research and Therapy 14: R242.
Vicente, R., D. Noel, Y.M. Pers, F. Apparailly, and C. Jorgensen. 2015. Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nature Reviews. Rheumatology 12(4): 211–220.
Mendell, J.T., and E.N. Olson. 2012. MicroRNAs in stress signaling and human disease. Cell 148: 1172–1187.
Winter, J., S. Jung, S. Keller, R.I. Gregory, and S. Diederichs. 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology 11: 228–234.
Lu, B., C. Wang, M. Wang, W. Li, F. Chen, K.J. Tracey, and H. Wang. 2014. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Review of Clinical Immunology 10: 713–727.
Tian, J., A.M. Avalos, S.Y. Mao, B. Chen, K. Senthil, H. Wu, P. Parroche, S. Drabic, D. Golenbock, C. Sirois, et al. 2007. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunology 8: 487–496.
Yu, M., H. Wang, A. Ding, D.T. Golenbock, E. Latz, C.J. Czura, M.J. Fenton, K.J. Tracey, and H. Yang. 2006. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26: 174–179.
Fiuza, C., M. Bustin, S. Talwar, M. Tropea, E. Gerstenberger, J.H. Shelhamer, and A.F. Suffredini. 2003. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101: 2652–2660.
Ley, C., S. Ekman, B. Roneus, and M.L. Eloranta. 2009. Interleukin-6 and high mobility group box protein-1 in synovial membranes and osteochondral fragments in equine osteoarthritis. Research in Veterinary Science 86: 490–497.
Heinola, T., V.P. Kouri, P. Clarijs, H. Ciferska, A. Sukura, J. Salo, and Y.T. Konttinen. 2010. High mobility group box-1 (HMGB-1) in osteoarthritic cartilage. Clinical and Experimental Rheumatology 28: 511–518.
Garcia-Arnandis, I., M.I. Guillen, F. Gomar, J.P. Pelletier, J. Martel-Pelletier, and M.J. Alcaraz. 2010. High mobility group box 1 potentiates the pro-inflammatory effects of interleukin-1beta in osteoarthritic synoviocytes. Arthritis Research and Therapy 12: R165.
Li, Z.C., G.Q. Cheng, K.Z. Hu, M.Q. Li, W.P. Zang, Y.Q. Dong, W.L. Wang, and Z.D. Liu. 2011. Correlation of synovial fluid HMGB-1 levels with radiographic severity of knee osteoarthritis. Clinical and Investigative Medicine 34: E298.
Yuan, Z., G. Luo, X. Li, J. Chen, J. Wu, and Y. Peng. 2016. PPARgamma inhibits HMGB1 expression through upregulation of miR-142-3p in vitro and in vivo. Cellular Signalling 28: 158–164.
Xu, G., Z. Zhang, J. Wei, Y. Zhang, L. Guo, and X. Liu. 2013. microR-142-3p down-regulates IRAK-1 in response to Mycobacterium bovis BCG infection in macrophages. Tuberculosis (Edinburgh, Scotland) 93: 606–611.
Gosset, M., F. Berenbaum, S. Thirion, and C. Jacques. 2008. Primary culture and phenotyping of murine chondrocytes. Nature Protocols 3: 1253–1260.
Glasson, S.S., T.J. Blanchet, and E.A. Morris. 2007. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis and Cartilage 15: 1061–1069.
Pritzker, K.P., S. Gay, S.A. Jimenez, K. Ostergaard, J.P. Pelletier, P.A. Revell, D. Salter, and W.B. van den Berg. 2006. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis and Cartilage 14: 13–29.
Luan, Z.G., H. Zhang, P.T. Yang, X.C. Ma, C. Zhang, and R.X. Guo. 2010. HMGB1 activates nuclear factor-kappaB signaling by RAGE and increases the production of TNF-alpha in human umbilical vein endothelial cells. Immunobiology 215: 956–962.
Perri, R., S. Nares, S. Zhang, S.P. Barros, and S. Offenbacher. 2012. MicroRNA modulation in obesity and periodontitis. Journal of Dental Research 91: 33–38.
Pivarcsi, A., F. Meisgen, N. Xu, M. Stahle, and E. Sonkoly. 2013. Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-alpha therapy. British Journal of Dermatology 169: 563–570.
Ralfkiaer, U., L.M. Lindahl, T. Litman, L.M. Gjerdrum, C.B. Ahler, R. Gniadecki, T. Marstrand, S. Fredholm, L. Iversen, M.A. Wasik, et al. 2014. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Research 34: 7207–7217.
Schaefer, J.S., T. Attumi, A.R. Opekun, B. Abraham, J. Hou, H. Shelby, D.Y. Graham, C. Streckfus, and J.R. Klein. 2015. MicroRNA signatures differentiate Crohn’s disease from ulcerative colitis. BMC Immunology 16: 5.
Boomiraj, H., V. Mohankumar, P. Lalitha, and B. Devarajan. 2015. Human corneal microRNA expression profile in fungal keratitis. Investigative Ophthalmology & Visual Science 56: 7939–7946.
Naqvi, A.R., J.B. Fordham, and S. Nares. 2015. miR-24, miR-30b, and miR-142-3p regulate phagocytosis in myeloid inflammatory cells. Journal of Immunology 194: 1916–1927.
Yamada, Y., K. Kosaka, T. Miyazawa, K. Kurata-Miura, and T. Yoshida. 2014. miR-142-3p enhances FcepsilonRI-mediated degranulation in mast cells. Biochemical and Biophysical Research Communications 443: 980–986.
Sun, Y., S. Varambally, C.A. Maher, Q. Cao, P. Chockley, T. Toubai, C. Malter, E. Nieves, I. Tawara, Y. Wang, et al. 2011. Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood 117: 6172–6183.
Xiao, P., and W.L. Liu. 2015. MiR-142-3p functions as a potential tumor suppressor directly targeting HMGB1 in non-small-cell lung carcinoma. International Journal of Clinical and Experimental Pathology 8: 10800–10807.
Andersson, U., and K.J. Tracey. 2011. HMGB1 is a therapeutic target for sterile inflammation and infection. Annual Review of Immunology 29: 139–162.
Kang, R., R. Chen, Q. Zhang, W. Hou, S. Wu, L. Cao, J. Huang, Y. Yu, X.G. Fan, Z. Yan, et al. 2014. HMGB1 in health and disease. Molecular Aspects of Medicine 40: 1–116.
Terada, C., A. Yoshida, Y. Nasu, S. Mori, Y. Tomono, M. Tanaka, H.K. Takahashi, M. Nishibori, T. Ozaki, and K. Nishida. 2011. Gene expression and localization of high-mobility group box chromosomal protein-1 (HMGB-1) in human osteoarthritic cartilage. Acta Medica Okayama 65: 369–377.
Ke, X., G. Jin, Y. Yang, X. Cao, R. Fang, X. Feng, and B. Lei. 2015. Synovial fluid HMGB-1 levels are associated with osteoarthritis severity. Clinical Laboratory 61: 809–818.
Wahamaa, H., H. Schierbeck, H.S. Hreggvidsdottir, K. Palmblad, A.C. Aveberger, U. Andersson, and H.E. Harris. 2011. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Research and Therapy 13: R136.
Qin, Y., Y. Chen, W. Wang, Z. Wang, G. Tang, P. Zhang, Z. He, Y. Liu, S.M. Dai, and Q. Shen. 2014. HMGB1-LPS complex promotes transformation of osteoarthritis synovial fibroblasts to a rheumatoid arthritis synovial fibroblast-like phenotype. Cell Death & Disease 5: e1077.
Guijarro-Munoz, I., M. Compte, A. Alvarez-Cienfuegos, L. Alvarez-Vallina, and L. Sanz. 2014. Lipopolysaccharide activates toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. Journal of Biological Chemistry 289: 2457–2468.
Weber, D.J., A.S. Gracon, M.S. Ripsch, A.J. Fisher, B.M. Cheon, P.H. Pandya, R. Vittal, M.L. Capitano, Y. Kim, Y.M. Allette, et al. 2014. The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation. Science Translational Medicine 6: 252ra124.
Sun, J., S. Shi, Q. Wang, K. Yu, and R. Wang. 2015. Continuous hemodiafiltration therapy reduces damage of multi-organs by ameliorating of HMGB1/TLR4/NFkappaB in a dog sepsis model. International Journal of Clinical and Experimental Pathology 8: 1555–1564.