Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự thay đổi vi mô quanh các implant titan được kích thích bằng sinh lý học trong chuột cái đã cắt buồng trứng
Tóm tắt
Loãng xương có thể là một yếu tố rủi ro trong việc đạt được sự tích hợp xương do ảnh hưởng của nó đến các thuộc tính tái tạo xương trong sinh lý học xương. Mục tiêu của nghiên cứu này là đánh giá sự thay đổi vi mô hình xương xung quanh các implant titan bị tác động bởi cơ học và năng lượng điện trong chuột loãng xương. Mười lăm con chuột Sprague-Dawley 12 tuần tuổi đã được cắt buồng trứng để phát triển loãng xương. Sau 8 tuần điều trị, hai implant titan được đặt đối xứng tại các đầu xa của xương chày. Các động vật được chia ngẫu nhiên thành một nhóm đối chứng và hai nhóm thí nghiệm được kích thích sinh lý học, mỗi nhóm có năm con vật. Trong nhóm thí nghiệm đầu tiên, kích thích trường điện từ xung (PEMF) được áp dụng với cường độ 0.2 mT kéo dài 4 giờ/ngày, trong khi nhóm thứ hai nhận được rung cơ học tần số cao với biên độ thấp (MECHVIB) ở mức 50 Hz trong 14 phút/ngày. Sau khi hoàn thành thời gian điều trị hai tuần, tất cả các con vật đã được hy sinh. Các vị trí xương, bao gồm cả implant, đã được cắt, loại bỏ theo khối và phân tích bằng máy microCT. Thể tích xương tương đối và các tham số cấu trúc xương vi mô đã được đánh giá cho thể tích vùng quan tâm (VOI) rộng 144 μm quanh implant. Thể tích xương tương đối trung bình trong VOI quanh implant PEMF và MECHVIB cao hơn đáng kể so với nhóm đối chứng (P < .05). Sự khác biệt về độ dày và khoảng cách của bè xương quanh implant trong tất cả các nhóm là tương tự (P > .05), trong khi sự khác biệt về số lượng bè xương giữa các nhóm thử nghiệm và nhóm đối chứng là có ý nghĩa trong tất cả các VOI (P < .05). Kích thích sinh lý học làm tăng đáng kể thể tích xương quanh các implant titan được đặt trong chuột loãng xương. MECHVIB với tần số cao, biên độ thấp hiệu quả hơn PEMF trong việc phục hồi xương về mặt thể tích xương tương đối.
Từ khóa
#loãng xương #implant titan #kích thích sinh lý học #PEMF #rung cơ học tần số caoTài liệu tham khảo
Hansson S: The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Implants Res. 1999, 10: 394-405. 10.1034/j.1600-0501.1999.100506.x.
Weinstein AM, Klawitter JJ, Cleveland TW, Amoss DC: Electrical stimulation of bone growth into porous alumina. J Biomed Mater Res. 1976, 10: 231-247. 10.1002/jbm.820100205.
Young SO, Park JB, Kenner GH, Moort RR, Myers BR, Sauer BW: Dental implant fixation by electrically mediated process. I. Interfacial strength. Biomater Med Devices Artif Organs. 1978, 6: 111-26.
Berry JL, Geiger JM, Moran M, Skaraba JS, Greenwald AS: Use of tricalcium phosphate or electrical stimulation to enhance the bone-porous implant interface. J Biomed Mater Res. 1986, 20: 65-77. 10.1002/jbm.820200107.
Martin TJ, Ng KW: Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem. 1994, 56: 357-366. 10.1002/jcb.240560312.
Ijiri K, Matsunaga S, Fukuyama K, Maeda S, Sakou T, Kitano M, Senba I: The effect of pulsing electromagnetic field on bone ingrowth into a porous coated implant. Anticancer Res. 1996, 16: 2853-2856.
Matsumoto H, Ochi M, Abiko Y, Hirose Y, Kaku T, Sakaguchi K: Pulsed electromagnetic fields promote bone formation around dental implants inserted into the femur of rabbits. Clin Oral Implants Res. 2000, 11: 354-360. 10.1034/j.1600-0501.2000.011004354.x.
Rubin CT, McLeod KJ: Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Oral Implants Res. 1994, 298: 165-74.
Chao EY, Inoue N: Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur Cell Mater. 2003, 6: 72-84.
Meyer U, Kruse-Lösler B, Wiesmann HP: Principles of bone formation driven by biophysical forces in craniofacial surgery. Br J Oral Maxillofac Surg. 2006, 44: 289-95. 10.1016/j.bjoms.2005.06.026.
Degan IL, Stetsula VI: Consolidation of bone fragments in a constant magnetic field. Ortopediia Tracmatologiia I Protezirovanie. 1971, 32: 45-48.
Kim HJ, Chang IT, Heo SJ, Koak JY, Kim SK, Jang JH: Effect of magnetic field on the fibronectin adsorption, cell attachment and proliferation on titanium surface. Clin Oral Implants Res. 2005, 16: 557-562. 10.1111/j.1600-0501.2005.01164.x.
Bagi C, Burger EH: Mechanical stimulation by intermittent compression stimulates sulfate incorporation and matrix mineralization in fetal mouse long-bone rudiments under serum-free conditions. Calcif Tissue Int. 1989, 45: 342-7. 10.1007/BF02556004.
De Smet E, Jaecques S, Vandamme K, Vander Sloten J, Naert I: Positive effect of early loading on implant stability in the bi-cortical guinea pig model. Clin Oral Implants Res. 2005, 16: 402-7. 10.1111/j.1600-0501.2005.01156.x.
Cehreli M, Sahin S, Akca K: Role of mechanical environment and implant design on bone tissue differentiation: Current knowledge and future contexts. J Dent. 2004, 32: 123-132. 10.1016/j.jdent.2003.09.003.
Rubin C, Turnet AS, Bain S, Mallinckordt C, McLeod K: Anabolism. Low mechanical signal strengthen long bones. Nature. 2001, 412: 603-4. 10.1038/35088122.
Rubin C, Pope M, Fritton JC, Magnusson M, Hansson T, McLeod K: Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine. 2003, 28: 2621-7. 10.1097/01.BRS.0000102682.61791.C9.
Rubin C, Xu G, Judex S: The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J. 2001, 15: 2225-9. 10.1096/fj.01-0166com.
Qi MC, Zhou X-Q, Hu J, Du Z-J, Yang J-H, Liu M, Li X-M: Oestrogen replacement therapy promotes bone healing around dental implants in osteoporotic rats. Int J Oral Maxillofac Surg. 2004, 33: 279-285. 10.1006/ijom.2002.0398.
Nakajima D, Kim C-S, Oh T-W, Yang CY, Naka T, Igawa S, Ohta F: Suppressive effects of genistein dosage and resistance exercise on bone loss in ovariectomized rats. J Physiol Anthropol Appl Human Sci. 2001, 20: 285-291. 10.2114/jpa.20.285.
Chae HJ, Choi KH, Chae SW, Kim HM, Shin TK, Lee GY, Jeong GS, Park HR, Choi HI, Kim SB, Yoo SK, Kim HR: Placenta hominis protects osteoporosis in ovariectomized rats. Immunopharmacol Immunotoxicol. 2006, 28: 165-73. 10.1080/08923970600626197.
Wennerberg A, Albrektsson T, Andresson B, Kroll JJ: A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res. 1995, 6: 24-30. 10.1034/j.1600-0501.1995.060103.x.
Müller M, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Rüegsegger P: Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998, 28: 59-66. 10.1016/S8756-3282(98)00068-4.
Rebaudi A, Koller B, Laib A, Trisi P: Microcomputed tomographic analysis of the peri-implant bone. Int J Periodontics Restorative Dent. 2004, 24: 316-325.
Ruegsegger P, Koller B, Muller R: A microtomographic system for nondestructive evalation of bone arhitecture. Calcif Tissue Int. 1996, 58: 24-9. 10.1007/BF02509542.
Ito M, Nakamura T, Matsumoto T, Tsurusaki K, Hayashi K: Analysis of trabecular microarchitecture of huma bone using microcomputed tomography in patients hip arthrosis with or without vertebral fracture. Bone. 1998, 23: 163-169. 10.1016/S8756-3282(98)00083-0.
Sakakura CE, Giro G, Goncalves D, Pereira RMR, Orrico SRP, Marcantonio E: Radiographic assessment of bone density around integrated titanium implants after ovariectomy in rats. Clin Oral Implants Res. 2006, 17: 134-138. 10.1111/j.1600-0501.2005.01224.x.
Rubin CT, Lanyon LE: Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985, 37: 411-417. 10.1007/BF02553711.
O'Connor JA, Lanyon LE, MacFie HM: The influence of strain rate on adaptive bone remodelling. J Biomech. 1982, 15: 767-781. 10.1016/0021-9290(82)90092-6.
Shimizu T, Zerwekh JE, Videman T, Grill K, Mooney V, Holmes RE, Hagler HK: Bone ingrowth into porous calcium phosphate ceramics: influence of pulsing electromagnetic field. J Orthop Res. 1988, 6: 248-258. 10.1002/jor.1100060212.
