Micro-drilling of silicon wafer by industrial CO2 laser
Tóm tắt
Laser micromachining is currently used in the MEMS production to replace the traditional etching process which consumes longer time to complete. The objective of this study is to investigate the drilling capability of industrial CO2 laser in processing of silicon wafer. In this work, the holes were drilled on P-type silicon wafer with thickness of 525 μm. Geometrical characteristic of holes produce, which is diameter entrance that depends on laser parameter were investigated and analyzed. Analysis of Variance (ANOVA) was used to analyze the result and generated an appropriate model for the laser drilling processing. The laser parameters involved were laser power, pulse frequency and duty cycle. The experimental results showed the entrance diameter of drilling holes was increase when the laser power and duty cycle increased. The entrance diameter of drilling hole decreases when the pulse frequency increases.
Tài liệu tham khảo
Bharatish, A, Murthy, HNN, Anand, B, Madhusoodana, CD, Praveena, GS, & Krishna, M. (2013). Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics. Optics and Laser Technology, 53, 22–33.
Chen, MF. (2006). Investigation of laser micro-drilling for silicon wafer substrate. Ph.D. thesis (pp. 1–6). Taiwan: National Changhua University of Education.
Chung, CK, & Lin, SL. (2010). CO2 laser micromachined crackless through holes of Pyrex 7740 glass. International Journal of Machine Tools and Manufacture, 50, 961–968.
Chung, CK, & Wu, MY. (2007). A hybrid CO2 laser processing for silicon etching. Optics Express, 15, 7269–7274.
Jiao, L, Ng, EYK, Wee, LM, & Zheng, H. (2009). Parametric study of femtosecond pulses laser hole drilling of silicon wafer. Advances in Materials Research, 74, 273–277.
Jiao, LS, Ng, EYK, & Zheng, HY. (2013). Refining femtosecond laser induced periodical surface structures with liquid assist. Applied Surface Science, 264, 52–55.
Jiao, LS, Moon, SK, Ng, EYK, Zheng, HY, & Son, HS. (2014). Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon. Applied Physics Letters, 104, 1819021–1819024.
Ku, ISY, Reddyhoff, T, Holmes, AS, & Spikes, HA. (2011). Wear of silicon surfaces in MEMS. Wear, 271, 1050–1058.
Nayak, BK, Akarapu, R, Carberry, JP, & Liu, A. (2014). Experimental and theoretical investigation on CO2 laser drilling of fused silica. Journal of Laser Micro/Nanoengineering, 9, 79–82.
Sivarao, S, Milkey, KR, Samsudin, AR, Dubey, AK, & Kidd, P. (2013a). RSM modelling and optimization of industrial PVC foam. International Review on Modelling, 6, 1339–1343.
Sivarao, S, Thiru, S, Jusoff, K, Tan, CF, Anand, TJS, & Abdullah, A. (2013b). Establishing a hybrid laser lathing technology. World Applied Sciences Journal, 23, 53–59.
Vilhena, LM, Sedlacek, M, Podgornik, B, Vizintin, J, Babnik, A, & Mozina, J. (2009). Surface texturing by pulsed Nd:YAG laser. Tribology International, 42, 1496–1504.
Wadhwa, A, & Kumar, M. (2014). Simplified design of low-loss and flat dispersion photonic crystal waveguide on SOL. Optik - International Journal for Light and Electron Optics, 125, 2930–2933.
Wee, LM, Ng, EYK, Prathama, AH, & Zheng, H. (2011). Micro-machining of silicon wafer in air and under water. Optics and Laser Technology, 43, 62–71.
Yan, YZ, Ji, LF, Bao, Y, & Jiang, YJ. (2012). An experimental and numerical study on laser percussion drilling of thick-section alumina. Journal of Materials Processing Technology, 212, 1257–1270.