Micro‐and Nanoscale Metallic Glassy Fibers

Advanced Engineering Materials - Tập 12 Số 11 - Trang 1117-1122 - 2010
Jun Yi1, Xing Xiang Xia1, De Qian Zhao1, Ming Xiang Pan1, H. Y. Bai1, Wei Hua Wang1
1Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China

Tóm tắt

AbstractWhen bulk materials are made into micro‐and nanoscale fibers, there will be attractive improvement of structural and functional properties, even unusual experimental phenomena [Ref. 3]. The main drawback of various applications of metallic fibers is poor ability of present fabrication methods for controlling their dimensions and surface properties [Ref. 4,5]. Metallic glassy fibers (MGFs) are desired because of unique mechanical and physical properties and glass‐like thermoplastic processability of metallic glasses (MGs). Here, we report a synthetic route for production of micro‐to nanoscale MGFs (the diameter ranges from 100 µm to 70 nm) by driving bulk metallic glass rods in their supercooled liquid region via superplastic deformation. Compared with existing metallic fibers, the MGFs have precisely designed and controlled properties and size, high structural uniformity and surface smoothness, and extremely flexibility. Remarkably, the method is simple, efficient, and low cost, and the MGFs can be continuous prepared by the method. Furthermore, the MGFs circumvent brittleness of MGs by size reduction. We proposed a parameter based on the thermal and rheological properties of MG‐forming alloys to control the preparation and size of the fibers. The MGFs with superior properties might attract intensive scientific interest and open wide engineering and functional applications of glassy alloys.

Từ khóa


Tài liệu tham khảo

10.1038/nature03040

10.1038/416489a

Happey F., 1978, Applied Fibre Science

10.1002/adma.200700849

10.1021/nl802910h

10.1016/S1369-7021(09)70037-9

Wang W. H., 2009, Adv. Mater., 21, 1

10.1007/BF00591492

10.1016/0921-5093(91)90038-O

10.1016/S0079-6425(97)00001-7

10.1016/j.scriptamat.2009.05.027

Nakayama K. S., 2009, Adv. Mater., 21, 1

10.1557/jmr.2009.0362

10.1038/nature07718

10.1103/PhysRevLett.93.255506

10.1103/PhysRevLett.94.125510

10.1016/j.actamat.2008.09.012

10.1016/j.actamat.2008.11.018

10.1016/j.actamat.2004.01.034

10.1063/1.2884584

10.1038/nmat1984

10.1038/nmat2622

10.1016/j.scriptamat.2009.07.010

10.1021/nl801526c

10.1016/j.cplett.2004.04.054

10.1016/j.snb.2006.10.014

McDwell M. T., 2008, Mater. Sci. Eng., 16, 045003

10.1038/35065704

10.1063/1.466117

10.1063/1.2193060

10.1016/j.jnoncrysol.2004.07.056

10.1002/adma.200902943

10.1016/S0921-5093(00)01589-6