Micro-CT and FIB–SEM imaging and pore structure characterization of dolomite rock at multiple scales

Rajakumar S. Devarapalli1, Amina Islam1, Titly Farhana Faisal1, Mohamed Sassi1, Mustapha Jouiad1
1Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, A part part of Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Tóm tắt

With improvements of imaging techniques and computational power, Digital Rock Physics (DRP) has been increasingly used to determine transport and elastic properties of reservoir core plugs. Since numerical computations highly rely on accurate 3D representations of the porous microstructure of the rocks, the imaging technique and the scale at which the imaging is performed is a critical parameter. In this paper, we introduce a multiscale imaging workflow that uses both micro-X-ray tomography (micro-XCT) and focused ion beam combined with scanning electron microscope (FIB–SEM) to characterize a dolomite rock from the microscale to the nanoscale. This allows for the accurate capture of the different heterogeneities that exist in the carbonate (texture, mineralogy, pore size). The reconstructed microporous structures were then used to successfully predict elastic and permeability properties of selected carbonate.

Từ khóa


Tài liệu tham khảo

Andrä H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M et al (2013a) Digital rock physics benchmarks—part I: imaging and segmentation. Comput Geosci 50:25–32. doi:10.1016/j.cageo.2012.09.005

Andrä H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M et al (2013b) Digital rock physics benchmarks—part II: computing effective properties. Comput Geosci 50:33–43. doi:10.1016/j.cageo.2012.09.008

Arns CH, Knackstedt MA, Pinczewski WV, Garboczi EJ (2002) Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67(5):1396–1405

Arns CH, Knackstedt MA, Pinczewski WV, Martys N (2004) Virtual permeametry on microtomographic images. J Pet Sci Eng 45(1–2):41–46

Arns CH, Bauget F, Limaye A, Sakellariou A, Senden TJ (2005) Pore-scale characterization of carbonates using X-ray microtomography. SPE J 10:475–484

ASTM D4404-84 (2004) Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. doi:10.1520/D4404-84R04, https://www.astm.org/DATABASE.CART/HISTORICAL/D4404-84R04.htm

Bird MB, Butler SL, Hawkes CD, Kotzer T (2014) Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL. Comput Geosci 73:6–16. doi:10.1016/j.cageo.2014.08.009

Dvorkin J, Armbruster M, Baldwin C, Fang Q, Derzhi N, Gomez C et al (2008) The future of rock physics: computational methods vs. lab testing. First Break 26(9):63–68

Dvorkin J, Derzhi N, Diaz E, Fang Q (2011) Relevance of computational rock physics. Geophysics 76(5):E141–E153. doi:10.1190/geo2010-0352.1

FEI™ AVIZO Fire (2015) Software user manual and tutorial

Fournier F, Philippe L, Biscarrat K, Gallois A, Borgomano J, Foubert A (2011) Elastic properties of microporous cemented grainstones. Geophysics 76(6)

Fusseis F, Xiao X, Schrank C, Carlo FD (2014) A brief guide to synchrotron radiation-based microtomography in (structural) geology and rock mechanics. J Struct Geol 65:1–16

Garboczi EJ, Day AR (1995) An algorithm for computing the effective linear elastic properties of heterogeneous materials: three-dimensional results for composites with equal phase Poisson ratios. J Mech Phys Solids 43(9):1349–1362. doi:10.1016/0022-5096(95)00050-S

Garboczi EJ, Kushch VI (2015) Computing elastic moduli on 3-D X-ray computed tomography image stacks. J Mech Phys Solids 76:84–97. doi:10.1016/j.jmps.2014.12.003

Giannuzzi LA, Stevie FA (eds) (2005) Introduction to focused ion beams. Kluwer Academic Publishers, Boston. doi:10.1007/b101190

Hebert V, Garing C, Luquot L, Pezard P, Gouze P (2015) Multi-scale X-ray tomography analysis of carbonate porosity. Geol Soc Lond, Spec Publ 406(1):61–79. doi:10.1144/SP406.12

Houston AN, Schmidt S, Tarquis AM, Otten W, Baveye PC, Hapca SM (2013) Effect of scanning and image reconstruction settings in X-ray computed microtomography on quality and segmentation of 3D soil images. Geoderma 207–208(1):154–165. doi:10.1016/j.geoderma.2013.05.017

Ingrain Corporation specilized in Digital Core Analysis, Abu Dhabi, UAE. http://www.ingrainrocks.com

Jouini MS, Vega S, Al-Ratrout A (2015) Numerical estimation of carbonate rock properties using multiscale images. Geophys Prospect 63(2):405–421. doi:10.1111/1365-2478.12156

Knackstedt MA, Latham S, Madadi M, Sheppard AP, Varslot T, Arns CH (2009) Digital Rock Physics: 3D imaging of core material and correlations to acoustic and flow properties. Lead Edge 28(1):260–264

Madadi BM, Jones AC, Arns CH, Knackstedt MA (2009) 3D imaging and simulation of elastic properties of porous materials. Comput Sci Eng 11:65–73

Madonna C, Almqvist BSG, Saenger EH (2012) Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophys J Int 189(3):1475–1482. doi:10.1111/j.1365-246X.2012.05437.x

Mavko G, Mukerji T, Dvorkin J (2003) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, Cambridge

Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media (second). Cambridge University Press, Cambridge Retrieved from http://www.cambridge.org/9780521861366

Neto IAL, Misságia RM, Ceia MA, Archilha NL, Oliveira LC (2014) Carbonate pore system evaluation using the velocity–porosity–pressure relationship, digital image analysis, and differential effective medium theory. J Appl Geophys 110:23–33. doi:10.1016/j.jappgeo.2014.08.013

Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern SMC-9(1):62–66

Saenger EH, Enzmann F, Keehm Y, Steeb H (2011) Digital rock physics: effect of fluid viscosity on effective elastic properties. J Appl Geophys 74(4):236–241. doi:10.1016/j.jappgeo.2011.06.001

Sakellariou A, Arns CH, Sheppard AP, Sok RM, Averdunk H, Limaye A et al (2007) Developing a virtual materials laboratory. Mater Today 10(12):44–51

Saraji S, Piri M (2015) The representative sample size in shale oil rocks and nano-scale characterization of transport properties. Int J Coal Geol 146:42–54. doi:10.1016/j.coal.2015.04.005

Shulakova V, Pervukhina M, Müller TM, Lebedev M, Mayo S, Schmid S et al (2013) Computational elastic up-scaling of sandstone on the basis of X-ray micro-tomographic images. Geophys Prospect 61(2):287–301. doi:10.1111/j.1365-2478.2012.01082.x

Soulaine C, Gjetvaj F, Garing C, Roman S, Russian A, Gouze P, Tchelepi HA (2016) The impact of sub-resolution porosity of X-ray microtomography images on the permeability. Transp Porous Media 113(1):227–243. doi:10.1007/s11242-016-0690-2

Venturoli M, Boek ES (2006) Two-dimensional lattice-Boltzmann simulations of single phase flow in a pseudo two-dimensional micromodel. Phys A: Stat Mech Appl 362(1):23–29. doi:10.1016/j.physa.2005.09.006

Wildenschild D, Sheppard AP (2013) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51:217–246. doi:10.1016/j.advwatres.2012.07.018