Mice Deficient for Tenascin-R Display Alterations of the Extracellular Matrix and Decreased Axonal Conduction Velocities in the CNS

Journal of Neuroscience - Tập 19 Số 11 - Trang 4245-4262 - 1999
Philipp Weber1, Udo Bartsch1,2, Matthew N. Rasband3, R Czaniera4, Yolande Lang5, Horst Bluethmann5, Richard U. Margolis6, S. Rock Levinson7, Peter Shrager3, Dirk Montag1, Melitta Schachner4
1Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, CH 8093 Zürich, Switzerland
2Zentrum für Molekulare Neurobiologie, Universität Hamburg, D 20246 Hamburg, Germany,
3Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York 14642
4Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany
5Department Roche Genetics, F. Hoffmann-LaRoche, CH 4070 Basel, Switzerland,
6Department of Pharmacology, New York University Medical Center, New York, New York 10016, and
7Department of Physiology, University of Colorado Medical School, Denver, Colorado 80262

Tóm tắt

Tenascin-R (TN-R), an extracellular matrix glycoprotein of the CNS, localizes to nodes of Ranvier and perineuronal nets and interactsin vitrowith other extracellular matrix components and recognition molecules of the immunoglobulin superfamily. To characterize the functional roles of TN-Rin vivo, we have generated mice deficient for TN-R by homologous recombination using embryonic stem cells. TN-R-deficient mice are viable and fertile. The anatomy of all major brain areas and the formation and structure of myelin appear normal. However, immunostaining for the chondroitin sulfate proteoglycan phosphacan, a high-affinity ligand for TN-R, is weak and diffuse in the mutant when compared with wild-type mice. Compound action potential recordings from optic nerves of mutant mice show a significant decrease in conduction velocity as compared with controls. However, at nodes of Ranvier there is no apparent change in expression and distribution of Na+channels, which are thought to bind to TN-R via their β2 subunit. The distribution of carbohydrate epitopes of perineuronal nets recognized by the lectinWisteria floribundaor antibodies to the HNK-1 carbohydrate on somata and dendrites of cortical and hippocampal interneurons is abnormal. These observations indicate an essential role for TN-R in the formation of perineuronal nets and in normal conduction velocity of optic nerve.

Từ khóa


Tài liệu tham khảo

Abo, 1981, A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1)., J Immunol, 127, 1024, 10.4049/jimmunol.127.3.1024

10.1073/pnas.92.23.10590

10.1111/j.1460-9568.1992.tb00881.x

10.1523/JNEUROSCI.12-03-00736.1992

10.1002/glia.440090108

10.1002/glia.440150205

10.1083/jcb.122.1.265

10.1002/glia.440080306

10.1016/S0006-8993(09)90012-9

10.1016/0896-6273(89)90073-1

10.1016/0896-6273(93)90172-N

10.1038/ng0997-104

10.1016/0165-0173(94)90006-X

Cervello, 1996, The GPI-anchored adhesion molecule F3 induces tyrosine phosphorylation: involvement of the FNIII repeats., J Cell Sci, 109, 699, 10.1242/jcs.109.3.699

10.1530/jrf.0.0860679

Chan, 1991, In situ freezing of embryonic stem cells in multiwell plates., Trends Genet, 7, 76, 10.1016/0168-9525(91)90274-T

Chiquet-Ehrismann, 1994, The tenascin gene family., Perspect Dev Neurobiol, 2, 3

10.1113/jphysiol.1979.sp012843

Cifuentes-Diaz, 1998, The peripheral nerve and the neuromuscular junction are affected in the tenascin-C-deficient mouse., Cell Mol Biol, 44, 357

Derouiche, 1996, Spatial relationship of lectin-labeled extracellular matrix and glutamine synthetase-immunoreactive astrocytes in rat cortical forebrain regions., J Anat, 189, 363

10.1007/BF00269143

Erickson, 1994, Evolution of the tenascin family: implications for the function of the C-terminal fibrinogen-like domain., Perspect Dev Neurobiol, 2, 9

10.1523/JNEUROSCI.12-01-00257.1992

10.1016/0003-2697(83)90418-9

10.1083/jcb.102.3.844

10.1073/pnas.93.13.6594

Franklin KBJ Paxinos G (1997) The mouse brain in stereotactic coordinates. (Academic, New York).

Fujita, 1989, Glycosaminoglycan-related epitopes surrounding different subsets of mammalian central neurons., J Neurosci Res, 7, 117, 10.1016/0168-0102(89)90052-7

10.1016/S0143-4179(97)90090-1

10.1006/bbrc.1996.0561

10.1006/bbrc.1997.6101

10.1002/jnr.490290305

10.1083/jcb.120.5.1237

10.1083/jcb.109.2.775

10.1021/bi00436a052

10.1083/jcb.134.6.1499

Hall, 1993, The L2/HNK-1 carbohydrate mediates adhesion of neural cells to laminin., Eur J Neurosci, 5, 3442, 10.1111/j.1460-9568.1993.tb00202.x

10.1093/glycob/5.4.435

10.1097/00001756-199210000-00012

10.1016/0006-8993(94)91452-4

Hines, 1991, A computational test of the requirements for conduction in demyelinated axons., Restor Neurol Neurosci, 3, 81

Hogan B Beddington R Costantini R Lacy E (1986) Manipulating the mouse embryo: a laboratory manual. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

10.1038/326292a0

10.1016/0092-8674(95)90121-3

Koppe, 1997, Characterization of proteoglycan-containing perineuronal nets by enzymatic treatments of rat brain sections., J Histochem Cytochem, 29, 11, 10.1023/A:1026408716522

10.1038/316146a0

10.1038/227680a0

10.1523/JNEUROSCI.13-09-03986.1993

10.1111/j.1460-9568.1994.tb00304.x

10.1007/BF01194979

10.1038/336348a0

Margolis, 1996, Neurocan and phosphacan, two major nervous tissue-specific chondroitin sulfate proteoglycans., Perspect Dev Neurobiol, 3, 273

10.1016/0092-8674(90)90385-R

10.1523/JNEUROSCI.15-05-03761.1995

10.1083/jcb.127.6.1703

10.1074/jbc.273.12.6998

10.1002/jnr.490420514

10.1016/0896-6273(94)90472-3

10.1016/S0014-4886(05)80012-3

10.1523/JNEUROSCI.18-04-01465.1998

10.1016/0092-8674(94)90066-3

10.1002/cne.902430210

10.1007/BF01611440

10.1159/000111608

10.1016/0896-6273(92)90199-N

Olive, 1995, The F3 neuronal glycosylphosphatidylinositol-linked molecule is localized to glycolipid-enriched membrane subdomains and interacts with L1 and fyn kinase in cerebellum., J Neurochem, 65, 2307, 10.1046/j.1471-4159.1995.65052307.x

10.1016/0092-8674(95)90312-7

10.1083/jcb.109.4.1765

10.1016/0896-6273(93)90243-K

10.1523/JNEUROSCI.17-12-04642.1997

Peters A Palay SL Webster HD (1991) The fine structure of the nervous system, p 235. (Oxford, New York).

10.1083/jcb.105.4.1893

10.1016/0003-2697(92)90347-A

Rasband, 1998, Clustering of Na+ and K+ channels during development of myelinated central nervous system axons., Soc Neurosci Abstr, 24, 830

10.1523/JNEUROSCI.18-01-00036.1998

10.1101/gad.6.10.1821

Schachner, 1994, The perplexing multifunctionality of janusin, a tenascin-related molecule., Perspect Dev Neurobiol, 2, 33

10.1016/0306-4522(94)90044-2

10.1002/(SICI)1097-4547(19970101)47:1<109::AID-JNR12>3.0.CO;2-0

10.1016/0092-8674(91)90499-O

Srinivasan, 1997, Interaction between neuronal voltage gated sodium channels and the extracellular matrix protein tenascin., Soc Neurosci Abstr, 23, 909

10.1016/0006-8993(91)91154-S

10.1002/jnr.490350402

10.1002/neu.480280311

10.1073/pnas.76.9.4350

10.1038/365075a0

10.1002/(SICI)1097-4695(199804)35:1<1::AID-NEU1>3.0.CO;2-9

10.1111/j.1460-9568.1993.tb00497.x

10.1111/j.1460-9568.1996.tb01262.x

10.1074/jbc.272.51.32092

10.1002/(SICI)1097-4547(19980515)52:4<390::AID-JNR3>3.0.CO;2-4

Yamamoto, 1988, Distribution of glucuronic acid-and-sulfate-containing glycoproteins in the central nervous system of the adult mouse., J Neurosci Res, 5, 273, 10.1016/0168-0102(88)90031-4

10.1016/0378-1119(85)90120-9

10.1006/mcne.1995.1021