Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application

Springer Science and Business Media LLC - Tập 21 Số 8 - Trang 2393-2401 - 2010
Amir Reza Hanifi1, Mohammadhossein Fathi1, Hamid Mirmohammad Sadeghi2, Jaleh Varshosaz3
1Biomaterials Group, Materials Engineering Department, Isfahan University of Technology,Isfahan, Iran
2Biotechnology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
3Pharmaceutics Department, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Taira K, Kataoka K, Niidome T. Non-viral gene therapy—gene design and delivery. Tokyo: Springer-Verlag; 2005.

Davis ME. Non-viral gene delivery systems. Curr Opin Biotechnol. 2002;13:128–31.

Gao X, Kim KS, Liu D, Nonviral gene delivery: what we know and what is next. AAPS J. 2007; 9(1):Article 9.

Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

Sokolova V, Radtke I, Heumann R, Epple M. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials. 2006;27:3147–53.

Olton D, Li J, Wilson ME, Rogers T, Close J, Huang L, Kumta PN, Sfeir C. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials. 2007;28:1267–79.

Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005;5(6):893–905.

Suchanek LW, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials. 2004;25:4647–57.

Cacciotti I, Bianco A, Lombardi M, Montanaro L. Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc. 2009;29:2969–78.

Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JMF. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater. 2009;5:1233–40.

Lilley K, Gbureck U, Knowles J, Farrar D, Barralet J. Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med. 2005;16:455–60.

Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A. Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem. 2009;103:1666–74.

Kannan S, Ferreira JMF. Synthesis and thermal stability of hydroxyapatite- beta-tricalcium phosphate composites with cosubstituted sodium, magnesium, and fluorine. Chem Mater. 2006;18:198–203.

Kanzaki N, Onuma K, Treboux G, Tsutsumi S, Ito A. Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0 0 0 1) face. J Phys Chem B. 2000;104:4189–94.

Arajo JC, Sader MS, Moreira EL, Moraes VCA, LeGeros RZ, Soares GA. Maximum substitution of magnesium for calcium sites in Mg-β-TCP structure determined by X-ray powder diffraction with the Rietveld refinement. Mater Chem Phys. 2009;118:337–40.

Ito A, LeGeros RZ. Magnesium- and zinc-substituted beta-tricalcium phosphate materials. In: Vallet-Regi M, editor. Progress in bioceramics. Zurich: Trans Tech Publications; 2008. p. 85.

LeGeros RZ, Mijares D, Yao F, Tannous S, Catig G, Xi Q, Dias R, LeGeros JP. Synthetic bone mineral (SBM) for osteoporosis therapy: part 1—prevention of bone loss from mineral deficiency. Key Eng Mater. 2008;361–363:43–6.

Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW. Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants. Acta Biomater. 2007;3:785–93.

Schroeder LW, Dickens B, Brown WE. Crystallographic studies of the role of Mg as a stabilizing impurity in Ca3 (PO4)2 I. Refinement of Mg-containing β-Ca3 (PO4)2. J Solid State Chem. 1977;22:253–62.

Enderle R, Gotz-Neunhoeffer F, Gobbels M, Muller FA, Greil P. Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by refinement Rietveld. Biomaterials. 2005;26(17):3379–84.

Dolci G, Mongiorgi R, Prati C, Valdre G, Patent application no. WO 00/03747, 1998.

LeGeros RZ. Incorporation of magnesium in synthetic and in biological apatites. In: Fearnhead RW, Suga S, editors. Tooth enamel IV. Amsterdam: Elsevier; 1984. p. 32–6.

Mayer I, Schlam R, Featherstone JDB. Magnesium-containing carbonate apatites. J Inorg Biochem. 1997;66:1–6.

Golden DC, Ming DW. Nutrient-substituted hydroxyapatites: synthesis and characterization. Soil Sci Soc Am J. 1999;63:657–64.

Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N. Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem. 1993;49:69–78.

Okazaki M, Takahashi J, Kimura H. Comparison of crystallographic properties of Mg, Fe, Na, CO3, F, and Cl-containing apatites. J Osaka Univ Dent Sch. 1986;26:79–89.

Fathi MH, Hanifi A. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by sol–gel method. J Mater Lett. 2007;61(18):3978–83.

Fathi MH, Hanifi A. Sol–gel derived nanostructure hydroxyapatite powder and coating: aging time optimization. Adv Appl Ceram. 2009;108(6):363–8.

Chung RJ, Hsieh MF, Huang KC, Chou FI, Perng LH. Preparation of porous HA/beta-TCP biphasicbioceramic using a molten salt process. Key Eng Mater. 2006;309–311:1075–8.

Patterson AL. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978.

Landi E, Tampieri A, Celotti G, Sprio S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20:2377–87.

Ren F, Xin R, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5:3141–9.

Fathi MH, Hanifi A, Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol. 2008;202:536–42.

Suchanek LW, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution. J Solid State Chem. 2004;177:793–9.

LeGeros RZ, Gatti AM, Kijkowska R, Mijares DQ, LeGeros JP. Magnesium tricalcium phosphate: formation and properties. Key Eng Mater. 2004;254–256:127–30.

Lee D, Sfeir C, Kumta PN. Novel in situ synthesis and characterization of nanostructured magnesium substituted β-tricalcium phosphate (β-TCMP). Mater Sci Eng C. 2009;29:69–77.

Zyman Z, Tkachenko M, Epple M, Polyakov M, Naboka M. Magnesium-substituted hydroxyapatite ceramics. Mat.-wiss. u. Werkstofftech. 2006;37(6):474–7.

Landi E, Tampieri A, Mattioli-Belmonte M, Celotti G, Sandri M, Gigante A, Fava P, Biagini G. Biomimetic Mg- and Mg, CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. J Eur Ceram Soc. 2006;26:2593–601.

Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.

Sprio S, Tampieri A, Landi E, Sandri M, Martorana S, Celotti G, Logroscino G. Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater Sci Eng C. 2008;28:179–87.

W-Yih C, M-Shen L, Po-Hsun L, Pei-Shun T, Yung C, Shuichi Y. Studies of the interaction mechanism between single strand and double-strand DNA with hydroxyapatite by microcalorimetry and isotherm measurements. Colloids Surf A Physicochem Eng Asp. 2007;295(1–3):274–83.