Metric properties of the tropical Abel–Jacobi map
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bacher, R., de la Harpe, P., Nagnibeda, T.: The lattice of integral flows and the lattice of integral cuts on a finite graph. Bull. Soc. Math. Fr. 125(2), 167–198 (1997)
Baker, M., Faber, X.: Metrized graphs, Laplacian operators, and electrical networks. In: Quantum Graphs and Their Applications. Contemp. Math., vol. 415, pp. 15–33. Am. Math. Soc., Providence (2006)
Baker, M., Norine, S.: Riemann–Roch and Abel–Jacobi theory on a finite graph. Adv. Math. 215(2), 766–788 (2007)
Balacheff, F.: Invariant d’Hermite du réseau des flots entiers d’un graphe pondéré. Enseign. Math. (2) 52(3–4), 255–266 (2006)
Coyle, L.N., Lawler, G.F.: Lectures on Contemporary Probability. Student Mathematical Library, vol. 2. American Mathematical Society, Providence (1999)
Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Carus Mathematical Monographs, vol. 22. Mathematical Association of America, Washington (1984)
Faber, X.W.C.: The geometric Bogomolov conjecture for curves of small genus. Exp. Math. 18(3), 347–367 (2009)
Flanders, H.: A new proof of R. Foster’s averaging formula in networks. Linear Algebra Appl. 8, 35–37 (1974)
Foster, R.M.: The average impedance of an electrical network. In: Reissner Anniversary Volume. Contributions to Applied Mechanics, pp. 333–340. Edwards, Ann Arbor (1949)
Haase, C., Musiker, G., Yu, J.: Linear systems on tropical curve (2009). arXiv:0909.3685v1 [math.AG]
Kotani, M., Sunada, T.: Jacobian tori associated with a finite graph and its abelian covering graphs. Adv. Appl. Math. 24(2), 89–110 (2000)
Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and theta functions. In: Alexeev, V. et al. (eds.) Curves and Abelian Varieties. International Conference, Athens, GA, USA, 30 March–2 April 2007. Contemporary Mathematics, vol. 465, pp. 203–230. American Mathematical Society (AMS), Providence (2008)