Metric properties of the tropical Abel–Jacobi map

Springer Science and Business Media LLC - Tập 33 Số 3 - Trang 349-381 - 2011
Matthew Baker1, Xander Faber2
1School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
2Department of Mathematics and Statistics, McGill University, Montréal QC, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bacher, R., de la Harpe, P., Nagnibeda, T.: The lattice of integral flows and the lattice of integral cuts on a finite graph. Bull. Soc. Math. Fr. 125(2), 167–198 (1997)

Baker, M., Faber, X.: Metrized graphs, Laplacian operators, and electrical networks. In: Quantum Graphs and Their Applications. Contemp. Math., vol. 415, pp. 15–33. Am. Math. Soc., Providence (2006)

Baker, M., Norine, S.: Riemann–Roch and Abel–Jacobi theory on a finite graph. Adv. Math. 215(2), 766–788 (2007)

Baker, M., Rumely, R.S.: Harmonic analysis on metrized graphs. Can. J. Math. 59(2), 225–275 (2007)

Balacheff, F.: Invariant d’Hermite du réseau des flots entiers d’un graphe pondéré. Enseign. Math. (2) 52(3–4), 255–266 (2006)

Biggs, N.: Algebraic potential theory on graphs. Bull. Lond. Math. Soc. 29(6), 641–682 (1997)

Coyle, L.N., Lawler, G.F.: Lectures on Contemporary Probability. Student Mathematical Library, vol. 2. American Mathematical Society, Providence (1999)

Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Carus Mathematical Monographs, vol. 22. Mathematical Association of America, Washington (1984)

Faber, X.W.C.: The geometric Bogomolov conjecture for curves of small genus. Exp. Math. 18(3), 347–367 (2009)

Flanders, H.: A new proof of R. Foster’s averaging formula in networks. Linear Algebra Appl. 8, 35–37 (1974)

Foster, R.M.: The average impedance of an electrical network. In: Reissner Anniversary Volume. Contributions to Applied Mechanics, pp. 333–340. Edwards, Ann Arbor (1949)

Haase, C., Musiker, G., Yu, J.: Linear systems on tropical curve (2009). arXiv:0909.3685v1 [math.AG]

Kotani, M., Sunada, T.: Jacobian tori associated with a finite graph and its abelian covering graphs. Adv. Appl. Math. 24(2), 89–110 (2000)

Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and theta functions. In: Alexeev, V. et al. (eds.) Curves and Abelian Varieties. International Conference, Athens, GA, USA, 30 March–2 April 2007. Contemporary Mathematics, vol. 465, pp. 203–230. American Mathematical Society (AMS), Providence (2008)

Zhang, S.: Admissible pairing on a curve. Invent. Math. 112(1), 171–193 (1993)