Methylpyrazine Ammoxidation over Binary Oxide Systems: V. Effect of Phosphorus Additives on the Physicochemical and Catalytic Properties of a Vanadium–Titanium Catalyst in Methylpyrazine Ammoxidation
Tóm tắt
Oxide vanadium–titanium catalysts modified by phosphorus additives (20V2O5–(80 –n)TiO2–nP2O5, n = 1, 3, 5, 10, and 15 wt %) are studied in methylpyrazine ammoxidation. Two regions of compositions are found corresponding to radically different catalytic properties, namely, catalysts with a low (≤5 wt % P2O5) and high (≥10 wt % P2O5) concentration of the additive. In the first case, the introduction of phosphorus is accompanied by a gradual increase in the activity. In the second case, an increase in the additive concentration results in a decrease in the activity and selectivity to the target product, pyrazineamide, and a simultaneous increase in the selectivities to by-products, pyrazine and carbon oxides. The catalysts are characterized by X-ray diffraction analysis, differential dissolution, IR, and NMR spectroscopic data. As in the binary system, the active sites of the samples with a low concentration of phosphorus contain V5+ cations in a strongly distorted octahedral oxygen environment, which are strongly bound to a support due to the formation of V–O–Ti bonds. The catalytic properties of the samples containing ≥10 wt % P2O5 are due to the presence of the phase of a triple V–P–Ti compound with an atomic ratio V : P : Ti approximately equal to 1 : 1 : 1. The V5+ cations in this compound occur in a weakly distorted tetrahedral oxygen environment and are bound to the tetrahedral P5+ cations.
Tài liệu tham khảo
Grzybowska-Swierkosz, B., Appl. Catal., A, 1997, vol. 157, p. 262.
Vanadievye katalizatory okisleniya geterotsiklicheskikh soedinenii (Vanadium Catalysts for the Oxidation of Heterocyclic Compounds), Shimanskaya, M.V., Ed., Riga: Zinatne, 1990.
Busca, G., Lietti, L., Ramis, G., and Berti, F., Appl. Catal., B, 1998, vol. 18,no. 1, p. 1.
Bondareva, V.M., Andrushkevich, T.V., Lapina, O.B., et al., React. Kinet. Catal. Lett., 2003, vol. 78,no. 2, p. 355.
Zhu, J., Rebenstorf, B., and Andersson, S.L.T., J. Chem. Soc., Faraday Trans. I, 1989, vol. 85, p. 3645.
Overbeek, R.A., Warriga, P.A., Crombad, M.J.D., et al., Appl. Catal., 1996, vol. 135, p. 209.
Bond, G.C. and Tahir, S.F., Catal. Today, 1991, vol. 10,no. 3, p. 393.
Soria, J., Conesa, J.C., Lopez Granados, M., et al., J. Catal., 1989, vol. 120,no. 3, p. 457.
Blanco, J., Avila, P., Barthelemy, C., et al., Appl. Catal., 1990, vol. 63,no. 3, p. 403.
Deo, G. and Wachs, I.E., J. Catal., 1994, vol. 146,no. 3, p. 335.
Alyea, E.C., Lakshmi, L.J., and Ju, Z., Langmuir, 1997, vol. 13, p. 5621.
Van Hengstum, A.J., Pranger, J., Van Ommen, J.G., et al., Appl. Catal., 1984, vol. 11,no. 3, p. 317.
Buyanova, N.E., Karnaukhov, A.P., and Alabuzhev, Yu.A., Opredelenie udel'noi poverkhnosti dispersnykh i poristykh materialov. Metodicheskoe rukovodstvo (Determination of the Specific Surface Areas of Dispersed Materials), Novosibirsk: Institute of Catalysis, 1978.
Bondareva, V.M., Andrushkevich, T.V., and Zenkovets, G.A., Kinet. Katal., 1997, vol. 38,no. 5, p. 720.
Lapina, O.B., Khabibulin, D.F., Shubin, A.A., and Bondareva, V.M., J. Mol. Catal., 2000, vol. 162, p. 373.
Malakhov, V.V. and Vlasov, A.A., Kinet. Katal., 1995, vol. 36,no. 4, p. 503.
Al'kaeva, E.M., Andrushkevich, T.V., Zenkovets, G.A., et al., Stud. Surf. Sci. Catal., 1997, vol. 110, p. 939.
Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1963.
Sadtler, Y 246.
Fernandez, C., Bodart, P., and Amoureux, J.P., Solid-State NMR, 1994, vol. 3, p. 79.
Bondareva, V.M., Andrushkevich, T.V., Lapina, O.B., et al., Kinet. Katal., 2000, vol. 41,no. 5, p. 794.