Quá trình hấp phụ thuốc nhuộm xanh methylene lên than hoạt tính phát triển từ Calicotome villosa thông qua sự hoạt hóa H3PO4

Biomass Conversion and Biorefinery - Tập 13 - Trang 12763-12776 - 2021
Mohamad Ibrahim1, May Souleiman1, Akil Salloum1
1Department of Applied Physics, Higher Institute for Applied Sciences and Technology, Damascus, Syria

Tóm tắt

Than hoạt tính dạng bột (AC) được chế tạo từ nguồn tài nguyên sinh khối (Calicotome villosa) bằng cách sử dụng H3PO4 để hoạt hóa. Các điều kiện hoạt hóa tối ưu được xác định dựa trên chỉ số i-ôt và hiệu suất của AC đã chế tạo. Điều kiện hoạt hóa tốt nhất được tìm thấy khi sử dụng 100 mL dung dịch H3PO4 (50%wt) để hoạt hóa 20 g nguyên liệu thô, và áp dụng nhiệt độ nhiệt phân 500 °C trong 1 giờ. Chỉ số i-ôt cao nhất đạt được là 997 mg/g đối với AC trước đó với hiệu suất hoạt hóa bằng 45%. AC đã được đặc trưng bằng phương pháp quang phổ hồng ngoại biến đổi Fourier (FTIR); phương pháp nhiễu xạ tia X (XRD); diện tích bề mặt Brunauer, Emmett và Teller (BET); kính hiển vi điện tử quét (SEM); và phương pháp điểm điện tích không (pHPZC). AC cho thấy diện tích bề mặt BET cao (1051 m2/g) và pHPZC bằng 2.50, cho thấy khả năng phù hợp để loại bỏ các chất ô nhiễm mang điện dương từ các dung dịch nước như methylene blue (MB). Ảnh hưởng của liều lượng AC (25–150 mg), thời gian tiếp xúc (5–150 phút), nồng độ MB ban đầu (100–300 mg/L), và nhiệt độ (298–330 K) tới quá trình hấp phụ MB đã được nghiên cứu theo phương pháp lô. Động học hấp phụ được mô tả tốt bởi mô hình cấp độ giả thứ hai với hệ số tương quan R2 = 0.9969, trong khi dữ liệu isoterm hấp phụ thực nghiệm được phù hợp tốt hơn bởi isoterm Freundlich với cường độ hấp phụ 1/n = 0.2109 cho thấy tính thuận lợi của quá trình hấp phụ. Nó cũng được phát hiện rằng quá trình hấp phụ là tự phát và nội nhiệt. Kết quả cho thấy gỗ Calicotome villosa là một nguồn sinh khối có triển vọng để phát triển một loại than hoạt tính hiệu quả.

Từ khóa


Tài liệu tham khảo

Jawad AH, Ismail K, Ishak MAM, Wilson LD (2019) Conversion of Malaysian low-rank coal to mesoporous activated carbon: structure characterization and adsorption properties. Chin J Chem Eng 27(7):1716–1727. https://doi.org/10.1016/j.cjche.2018.12.006 Jawad AH, Mohd Firdaus Hum NN, Abdulhameed AS, & Mohd Ishak MA (2020). Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modelling, optimisation, and mechanism study. International Journal of Environmental Analytical Chemistry, 1-17. https://doi.org/10.1080/03067319.2020.1807529 Abdulhameed AS, Mohammad AT, Jawad AH (2019) Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J Clean Prod 232:43–56. https://doi.org/10.1016/j.jclepro.2019.05.291 Jafari F, Nasirizadeh N, Mirjalili M (2020) Enhanced degradation of reactive dyes using a novel carbon ceramic electrode based on copper nanoparticles and multiwall carbon nanotubes. Chin J Chem Eng 28(1):318–327. https://doi.org/10.1016/j.cjche.2019.05.001 Pereira VR, Isloor AM, Bhat UK, Ismail AF, Obaid A, Fun HK (2015) Preparation and performance studies of polysulfone-sulfated nano-titania (S-TiO2) nanofiltration membranes for dye removal. RSC Adv 5(66):53874–53885. https://doi.org/10.1039/C5RA07994B Mohammad AT, Abdulhameed AS, Jawad AH (2019) Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: methyl orange adsorption and mechanism studies. Int J Biol Macromol 129:98–109. https://doi.org/10.1016/j.ijbiomac.2019.02.025 Zhao X, Becker GC, Faweya N, Correa CR, Yang S, Xie X, Kruse A (2018) Fertilizer and activated carbon production by hydrothermal carbonization of digestate. Biomass Conversion and Biorefinery 8(2):423–436. https://doi.org/10.1007/s13399-017-0291-5 Jawad AH, Bardhan M, Islam MA, Islam MA, Syed-Hassan SSA, Surip SN et al (2020) Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surfaces and Interfaces 21:100688. https://doi.org/10.1016/j.surfin.2020.100688 Jawad AH, Sauodi MH, Mastuli MS, Aouda MA, Radzun KA (2018) Pomegranate peels collected from fresh juice shop as a renewable precursor for high surface area activated carbon with potential application for methylene blue adsorption. Desalin Water Treat 124:287–296. https://doi.org/10.5004/dwt.2018.22725 Paluri P, Ahmad KA, & Durbha KS (2020). Importance of estimation of optimum isotherm model parameters for adsorption of methylene blue onto biomass derived activated carbons: Comparison between linear and non-linear methods. Biomass Conversion and Biorefinery, 1-18. https://doi.org/10.1007/s13399-020-00867-y De Souza, C. C., Ciriano, M. R., da Silva, E. F., de Oliveira, M. A., da Silva Bezerra, A. C., Dumont, M. R., ... & Machado, A. R. T. (2021). Activated carbon obtained from cardboard tube waste of immersion thermocouple and adsorption of methylene blue. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-021-01428-7 Jawad AH, Sabar S, Ishak MAM, Wilson LD, Ahmad Norrahma SS, Talari MK, Farhan AM (2017) Microwave-assisted preparation of mesoporous-activated carbon from coconut (Cocos nucifera) leaf by H3PO4 activation for methylene blue adsorption. Chem Eng Commun 204(10):1143–1156. https://doi.org/10.1080/00986445.2017.1347565 Namal OO, Kalipci E (2020) Adsorption kinetics of methylene blue removal from aqueous solutions using potassium hydroxide (KOH) modified apricot kernel shells. Int J Environ Anal Chem 100(14):1549–1565. https://doi.org/10.1080/03067319.2019.1656721 Abdulhameed AS, Hum NNMF, Rangabhashiyam S, Jawad AH, Wilson LD, Yaseen ZM et al (2021) Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. Journal of Environmental Chemical Engineering 9(4):105530. https://doi.org/10.1016/j.jece.2021.105530 Bardhan M, Novera TM, Tabassum M, Islam M, Jawad AH (2020) Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process. Water Sci Technol 82(9):1932–1949. https://doi.org/10.2166/wst.2020.451 Zou K, Guan Z, Deng Y, Chen G (2020) Nitrogen-rich porous carbon in ultra-high yield derived from activation of biomass waste by a novel eutectic salt for high performance Li-ion capacitors. Carbon 161:25–35. https://doi.org/10.1016/j.carbon.2020.01.045 Jawad AH, Ramlah AR, Khudzir I, Sabar S (2017) High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue. Desalin Water Treat 74:326–335. https://doi.org/10.5004/dwt.2017.20571 Misnon II, Zain NKM, Jose R (2019) Conversion of oil palm kernel shell biomass to activated carbon for supercapacitor electrode application. Waste and Biomass Valorization 10(6):1731–1740. https://doi.org/10.1007/s12649-018-0196-y Danish M, Ahmad T (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sust Energ Rev 87:1–21. https://doi.org/10.1016/j.rser.2018.02.003 Gehrke V, Maron GK, da Silva Rodrigues L, Alano JH, de Pereira CMP, Orlandi MO, Carreño NLV (2021) Facile preparation of a novel biomass-derived H3PO4 and Mn (NO3)2 activated carbon from citrus bergamia peels for high-performance supercapacitors. Materials Today Communications 26:101779. https://doi.org/10.1016/j.mtcomm.2020.101779 Igwegbe CA, Ighalo JO, Onyechi KK, Onukwuli OD (2021) Adsorption of Congo red and malachite green using H3PO4 and NaCl-modified activated carbon from rubber (Hevea brasiliensis) seed shells. Sustainable Water Resources Management 7(4):1–16. https://doi.org/10.1007/s40899-021-00544-6 Paluri P, & Durbha KS (2021). Equilibrium, kinetic, and thermodynamic study for the adsorption of methylene blue onto activated carbons prepared from the banana root through chemical activation with phosphoric acid. Biomass Conversion and Biorefinery, 1-20. https://doi.org/10.1007/s13399-021-01883-2 Standard, A. S. T. M. (1999). Standard test methods for moisture in activated carbon. Philadelphia, PA: ASTM Committee on Standards. D 2867. 10.1520/D2867-09.2 Standard, A. S. T. M. (2004) Standard test method for volatile matter content of activated carbon samples. ASTM Committee on Standards. D 3175. https://doi.org/10.1520/D5832-98R08.2 Standard, A. S. T. M. (2004) Standard test method for total ash content of activated carbon. ASTM Committee on Standards. D 2866. https://doi.org/10.1520/D2866-11.2 ASTM D4607-94. (2006). Standard test method for determination of iodine number of activated carbon. In American Society for Testing and Materials (pp. 1-5) Kong L, Gong L, Wang J (2015) Removal of methylene blue from wastewater using fallen leaves as an adsorbent. Desalin Water Treat 53(9):2489–2500. https://doi.org/10.1080/19443994.2013.863738 Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Al-Kahtani AA, ALOthman, Z. A. (2021) Parametric optimization by Box–Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. Journal of Environmental Chemical Engineering 9(3):105166. https://doi.org/10.1016/j.jece.2021.105166 Mubarak A, Shazwani N, Sabar S, Jawad AH (2020) The study of commercial Titanium Dioxide (TiO2) Degussa P25 for the adsorption of acidic dye/Nur Shazwani Abdul Mubarak, S. Sabar and Ali H. Jawad. Science Letters (ScL) 14(1):68–83. https://doi.org/10.24191/sl.v14i1.10607 Solum MS, Pugmire RJ, Jagtoyen M, Derbyshire F (1995) Evolution of carbon structure in chemically activated wood. Carbon 33(9):1247–1254. https://doi.org/10.1016/0008-6223(95)00067-N Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpää M (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18(2):393–415. https://doi.org/10.1007/s10311-019-00955-0 Zhong ZY, Yang Q, Li XM, Luo K, Liu Y, Zeng GM (2012) Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Ind Crop Prod 37(1):178–185. https://doi.org/10.1016/j.indcrop.2011.12.015 Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131. https://doi.org/10.1016/j.jtice.2015.02.032 Chen W, Zhang S, He F, Lu W, Xv H (2019) Porosity and surface chemistry development and thermal degradation of textile waste jute during recycling as activated carbon. Journal of Material Cycles and Waste Management 21(2):315–325. https://doi.org/10.1007/s10163-018-0792-8 Dimitrakopoulos AP, Papaioannou KK (2001) Flammability assessment of Mediterranean forest fuels. Fire Technol 37(2):143–152. https://doi.org/10.1023/A:1011641601076 Shahbaz M, AlNouss A, Parthasarathy P, Abdelaal AH, Mackey H, McKay G, Al-Ansari T (2020) Investigation of biomass components on the slow pyrolysis products yield using Aspen Plus for techno-economic analysis. Biomass Conversion and Biorefinery:1–13. https://doi.org/10.1007/s13399-020-01040-1 Waters CL, Janupala RR, Mallinson RG, Lobban LL (2017) Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. J Anal Appl Pyrolysis 126:380–389. https://doi.org/10.1016/j.jaap.2017.05.008 Lim WC, Srinivasakannan C, Balasubramanian N (2010) Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J Anal Appl Pyrolysis 88(2):181–186. https://doi.org/10.1016/J.JAAP.2010.04.004 Lawal AA, Hassan MA, Zakaria MR, Yusoff M, Norrrahim M, Mokhtar MN, Shirai Y (2021) Effect of oil palm biomass cellulosic content on nanopore structure and adsorption capacity of biochar. Bioresour Technol 332:125070. https://doi.org/10.1016/j.biortech.2021.125070 Shafizadeh F, Chin P (1977) Thermal deterioration of wood, Volume 23 of ACS Symposium Series. Chemical aspects. ASC Washington, Chapter Wood Technology, p 100 Li Y, Zhang X, Yang R, Li G, Hu C (2015) The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue. RSC Adv 5(41):32626–32636. https://doi.org/10.1039/C5RA04634C Jawad, A. H., Abdulhameed, A. S., Hanafiah, M. A. K. M., ALOthman, Z. A., Khan, M. R., & Surip, S. N. (2021). Numerical desirability function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: Modeling, kinetic, isotherm, thermodynamic, and mechanism study. Korean Journal of Chemical Engineering, 1-11. https://doi.org/10.1007/s11814-021-0801-9 Nayak A, Bhushan B, Gupta V, Sharma P (2017) Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions. J Colloid Interface Sci 493:228–240. https://doi.org/10.1016/j.jcis.2017.01.031 Alriols MG, Tejado A, Blanco MA, Mondragon I, Labidi J (2009) Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process. Chem Eng J 148(1):106–114. https://doi.org/10.1016/j.cej.2008.08.008 Wang Z, Nie E, Li J, Zhao Y, Luo X, Zheng Z (2011) Carbons prepared from Spartina alterniflora and its anaerobically digested residue by H3PO4 activation: Characterization and adsorption of cadmium from aqueous solutions. J Hazard Mater 188(1-3):29–36. https://doi.org/10.1016/j.jhazmat.2011.01.041 Jawad AH, Rashid RA, Ishak MAM, Wilson LD (2016) Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 57(52):25194–25206. https://doi.org/10.1080/19443994.2016.1144534 Jawad AH, Abdulhameed AS, Wilson LD, Syed-Hassan SSA, ALOthman ZA, Khan MR (2021) High surface area and mesoporous activated carbon from KOH-activated Dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chin J Chem Eng 32:281–290. https://doi.org/10.1016/j.cjche.2020.09.070 Qin C, Chen Y, Gao JM (2014) Manufacture and characterization of activated carbon from marigold straw (Tagetes erecta L) by H3PO4 chemical activation. Mater Lett 135:123–126. https://doi.org/10.1016/j.matlet.2014.07.151 Amin NK (2008) Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223(1-3):152–161. https://doi.org/10.1016/j.desal.2007.01.203 Kuang Y, Zhang X, Zhou S (2020) Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water 12(2):587. https://doi.org/10.3390/w12020587 Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. Journal of chemistry 2017. https://doi.org/10.1155/2017/3039817 Kumar KV, Gadipelli S, Wood B, Ramisetty KA, Stewart AA, Howard CA et al (2019) Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J Mater Chem A 7(17):10104–10137 https://doi.org/10.1039/C9TA00287A Zhang J, Wei C, Chu X, Vandeginste V, Ju W (2020) Multifractal Analysis in Characterizing Adsorption Pore Heterogeneity of Middle-and High-Rank Coal Reservoirs. ACS omega 5(31):19385–19401. https://doi.org/10.1021/acsomega.0c01115 Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM et al (2009) High capacity hydrogen adsorption in Cu (II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131(6):2159–2171. https://doi.org/10.1021/ja806624j Gao JJ, Qin YB, Zhou T, Cao DD, Xu P, Hochstetter D, Wang YF (2013) Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies. J Zhejiang Univ Sci B 14(7):650–658. https://doi.org/10.1631/jzus.B12a0225 Wang Y, Wang SL, Xie T, Cao J (2020) Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant. Bioresour Technol 316:123929. https://doi.org/10.1016/j.biortech.2020.123929 Han R, Zou W, Yu W, Cheng S, Wang Y, Shi J (2007) Biosorption of methylene blue from aqueous solution by fallen phoenix tree's leaves. J Hazard Mater 141(1):156–162. https://doi.org/10.1016/j.jhazmat.2006.06.107 Köseoğlu E, Akmil-Başar C (2015) Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol 26(3):811–818. https://doi.org/10.1016/j.apt.2015.02.006 Fierro V, Muñiz G, Basta AH, El-Saied H, Celzard A (2010) Rice straw as precursor of activated carbons: Activation with ortho-phosphoric acid. J Hazard Mater 181(1-3):27–34. https://doi.org/10.1016/j.jhazmat.2010.04.062 Heidarinejad Z, Rahmanian O, Fazlzadeh M, Heidari M (2018) Enhancement of methylene blue adsorption onto activated carbon prepared from Date Press Cake by low frequency ultrasound. J Mol Liq 264:591–599. https://doi.org/10.1016/j.molliq.2018.05.100 Angın D, Altintig E, Köse TE (2013) Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol 148:542–549. https://doi.org/10.1016/j.biortech.2013.08.164 Foo KY, Hameed BH (2012) Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresour Technol 104:679–686. https://doi.org/10.1016/j.biortech.2011.10.005 Patawat C, Silakate K, Chuan-Udom S, Supanchaiyamat N, Hunt AJ, Ngernyen Y (2020) Preparation of activated carbon from Dipterocarpus alatus fruit and its application for methylene blue adsorption. RSC Adv 10(36):21082–21091. https://doi.org/10.1039/D0RA03427D