Tình trạng methyl hóa của gen ức chế khối u p16 INK4A ở bệnh nhân ung thư vú không di truyền tại Iran

Journal of Cancer Research and Clinical Oncology - Tập 135 - Trang 991-996 - 2009
Sadeq Vallian1, Mandana Sedaghat2, Isar Nassiri1, Ali Frazmand2
1Division of Genetics, Department of Biology, Faculty of Science, The University of Isfahan, Isfahan, Islamic Republic of Iran
2Division of Cell and Molecular Biology, Faculty of Science, The University of Tehran, Tehran, Islamic Republic of Iran

Tóm tắt

p16 INK4A là gen ức chế khối u mã hóa protein ức chế Cdk, có chức năng ức chế phosphorylation của Cdk4/6 và pRb. Gen p16 INK4A có thể bị bất hoạt bởi nhiều sự kiện khác nhau, bao gồm sự siêu methyl hóa promoter. Để khảo sát trạng thái methyl hóa của gen p16 INK4A ở bệnh nhân ung thư vú tại Iran, chúng tôi đã nghiên cứu methyl hóa promoter thông qua phương pháp PCR đặc hiệu methyl hóa (MSP) và PCR liên quan đến enzyme cắt (REP). Ngoài ra, promoter p16 INK4A cũng được phân tích bằng phương pháp PCR-SSCP nhằm phát hiện đột biến và biến thể đơn nucleotide. Phân tích trên 70 bệnh nhân bằng MSP và REP cho thấy có sự siêu methyl hóa promoter p16 INK4A lần lượt ở 35,7% (25/70) và 40% (28/70) mẫu. So sánh dữ liệu phân tử và thông tin bệnh lý của các mẫu cho thấy gen p16 INK4A có thể bị bất hoạt ở giai đoạn đầu trong ung thư vú. Do đó, có thể đề xuất rằng sự siêu methyl hóa của promoter p16 INK4A là một trong những yếu tố di truyền ảnh hưởng đến tiến triển của bệnh ung thư vú không di truyền ở bệnh nhân Iran.

Từ khóa

#p16 INK4A #methyl hóa gen #ung thư vú #bệnh nhân Iran #biện pháp chẩn đoán #đột biến #epigenetic factors

Tài liệu tham khảo

Baur AS, Shaw P, Burri N et al (1999) Frequent silencing of p15INK4b(MTS2) and p16INK4a(MTS1) in B-cell and T-cell lymphomas. Blood 94:1773–1781 Baylin S, Herman G (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174. doi:10.1016/S0168-9525(99)01971-X Bender C, Pao M, Jones A (1998) Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 58(1):95–101 Bo Z, Ke L, Jianying C, Guobin W et al (2007) Effects of 5-Aza-CdR on cell proliferation of breast cancer cell line MDA-MB-435S and expression of maspin gene. J Huazhong Univ Sci 27(5):543–546. doi:10.1007/s11596-007-0517-z Brenner A, Wang A, Olopade O et al (1996) Preferential loss of expression of 16INK4a rather than p14 in breast cancer. Clin Cancer Res 2:993–1998 Calvano J, Rush E, Tan L et al (1997) Absence of p16 gene (CDKN2) deletions in microdissected primary breast carcinoma specimens. Ann Surg Oncol 4:416–420. doi:10.1007/BF02305555 David L, Yegnasubramanian S, Kumar A et al (2004) MDR1 promoter hypermethylation in MCF-7 human breast cancer cells: changes in chromatin structure induced by treatment with 5-aza-cytidine. Cancer Biol Ther 3:540–548 Dominguez G, Silva J, Garcia J et al (2003) Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors. Mutat Res 530:9–17. doi:10.1016/S0027-5107(03)00133-7 Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463. doi:10.1038/nature02625 Foster S, Wong D, Barrett M et al (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol 18:1793–1801 Gonzalez-Zulueta M, Bender CM, Yang AS et al (2000) Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 55:4531–4535 Herman J, Merlo A, Mao L et al (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530 Herman J, Graff J, Myohanen S et al (1996) Methylation specific PCR: a novel PCR assay for methylation status of CpG islands. Acad Sci 93:9821–9826. doi:10.1073/pnas.93.18.9821 Holst C, Nuovo G, Esteller M et al (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63:1596–1601 Jones PL, Veenstra GJ, Wade PA et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191. doi:10.1038/561 Kannan K, Sharpless N, Xu J et al (2003) Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proc Natl Acad Sci USA 100(3):1221–1225. doi:10.1073/pnas.0336397100 Lallemand D, Spyrou G, Yaniv M et al (1997) Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 14:819–830. doi:10.1038/sj.onc.1200901 Lars AL, Cathrine J, Paal SK (2007) Single-strand conformation polymorphism analysis using capillary array electrophoresis for large scale mutation detection. Nat Protoc 2:1458–1466 Li S, Rong M, Iacopetta B et al (2006) DNA hypermethylation in breast cancer and its association with clinicopathological features. Cancer Lett 237:272–280. doi:10.1016/j.canlet.2005.06.011 Magdinier F, Wolffe AP et al (2001) Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc Natl Acad Sci USA 98:4990–4995. doi:10.1073/pnas.101617298 Malumbres M, Castro IPD, Hernández MI et al (2000) Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15INK4b. Mol Cell Biol 20:2915–2925. doi:10.1128/MCB.20.8.2915-2925.2000 Mao L, Merlo A, Bedi G et al (1995) A novel p16INK4A transcript. Cancer Res 55:2995–2997 Munot K, Bell K, Lane S et al (2006) Pattern of expression of genes linked to epigenetic silencing in human breast cancer. Hum Pathol 37:989–999. doi:10.1016/j.humpath.2006.04.013 Myohanen SK, Baylin SB, Herman JG et al (1998) Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res 58:591–593 Nielsen H, Roosa G, Emdinc S et al (2001) Methylation of the p16Ink4a tumor suppressor gene 5′-CpG island in breast cancer. Cancer Lett 163(1):59–69. doi:10.1016/S0304-3835(00)00674-1 Parrella P, Luana Poeta M, Gallo P et al (2004) Adolfo Apicella, nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumors. Clin Cancer Res 10:5349–5354. doi:10.1158/1078-0432.CCR-04-0555 Quesnel B, Fenaux P, Philippe N et al (1995) Analysis of p16 gene deletion and point mutation in breast carcinoma. Br J Cancer 72:351–353 Reynolds P, Sigaroudinia M, Zardo G et al (2006) Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. Bio Chem 281(34):24790–24802 Roccoa J, Sidransky D (2001) p16 (MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 264:42–55. doi:10.1006/excr.2000.5149 Romanov S, Kozakiewicz K, Charles R et al (2001) Normal human mammary epithelial cells spontaneously emerge from senescence and acquire genomic instability. Nature 409:633–637. doi:10.1038/35054579 Sambrook J, Fritsh E, Maniatis T et al (2001) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E et al (2003) Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 9:1596–1603 Serrano M, Hannon G, Beach D et al (1999) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707. doi:10.1038/366704a0 Villar-Garea A, Fraga M, Espada J et al (2003) Procaine is a DNA demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63:4984–4989 Voorhoeve M, Agami R (2003) The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4:311–319. doi:10.1016/S1535-6108(03)00223-X Zee K, Calvano J, Bisogna M et al (1998) Hypomethylation and increased gene expression of p16Ink4a in primary and metastatic breast carcinoma as compared to normal breast tissue. Oncogene 16:2723–2727. doi:10.1038/sj.onc.1201794