Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells

Joule - Tập 3 Số 9 - Trang 2179-2192 - 2019
Minjin Kim1,2, Gi‐Hwan Kim3, Tae Kyung Lee4, In Woo Choi2, Hyewon Choi2, Yimhyun Jo2, Yung Jin Yoon5, Jae Won Kim5, Jiyun Lee4, Daihong Huh1, Heon Lee1, Sang Kyu Kwak4, Jin Young Kim5, Dong Suk Kim2
1Department of Materials and Science Engineering, Korea University, 5-1 Anam-dong, Sungbuk-Gu, Seoul 136-701, Republic of Korea
2KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), UNIST-Gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-851, Republic of Korea
3Photonic Energy Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 500-779, Republic of Korea
4Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-Gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-851, Republic of Korea
5Perovtronic Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-Gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-851, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jiang, 2019, Surface passivation of perovskite film for efficient solar cells, Nature Photonics

Kim, 2013, Mechanism of carrier accumulation in perovskite thin-absorber solar cells, Nat. Commun., 4, 2242, 10.1038/ncomms3242

Wehrenfennig, 2014, High charge carrier mobilities and lifetimes in organolead trihalide perovskites, Adv. Mater., 26, 1584, 10.1002/adma.201305172

Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604

Chen, 2015, Under the spotlight: The organic—inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, 10, 355, 10.1016/j.nantod.2015.04.009

Oga, 2014, Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps, J. Am. Chem. Soc., 136, 13818, 10.1021/ja506936f

Zhang, 2015, Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells, Nat. Commun., 6, 6142, 10.1038/ncomms7142

Jacobsson, 2016, Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells, Energy Environ. Sci., 9, 1706, 10.1039/C6EE00030D

Weber, 1978, CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure, Z. Naturforsch. C, 33B, 1443, 10.1515/znb-1978-1214

Weber, 1978, CH3NH3SnBrxJ3-x(x = 0-3), a Sn(II)-System with Cubic Perovskite Structure, Z. Naturforsch. C, 33B, 862, 10.1515/znb-1978-0809

Koh, 2014, Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells, J. Phys. Chem. C, 118, 16458, 10.1021/jp411112k

Pellet, 2014, Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting, 3151

Lee, 2014, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3, Adv. Mater., 26, 4991, 10.1002/adma.201401137

Han, 2016, Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties, Adv. Mater., 28, 2253, 10.1002/adma.201505002

Heo, 2014, Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process, Adv. Mater., 26, 8179, 10.1002/adma.201403140

Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014

Yang, 2015, SOLAR CELLS. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234, 10.1126/science.aaa9272

Tu, 2017, Modulated CH3NH3PbI3-xBrx film for efficient perovskite solar cells exceeding 18, Sci. Rep., 7, 44603, 10.1038/srep44603

Green, 2014, The emergence of perovskite solar cells, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134

Kim, 2017, High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells, ACS Nano, 11, 6057, 10.1021/acsnano.7b02015

Pool, 2017, Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD, Nat. Commun., 8, 14075, 10.1038/ncomms14075

Tai, 2016, Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity, Nat. Commun., 7, 11105, 10.1038/ncomms11105

Zhao, 2018, Passivation in perovskite solar cells: A review, Materials Today Energy, 7, 267, 10.1016/j.mtener.2018.01.004

Li, 2017, Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives, J. Mater. Chem. A Mater. Energy Sustain., 5, 12602, 10.1039/C7TA01798G

Chang, 2015, Tuning perovskite morphology by polymer additive for high efficiency solar cell, ACS Appl. Mater. Interfaces, 7, 4955, 10.1021/acsami.5b00052

Zhao, 2016, A polymer scaffold for self-healing perovskite solar cells, Nat. Commun., 7, 10228, 10.1038/ncomms10228

Guo, 2016, Polymer Stabilization of Lead(II) Perovskite Cubic Nanocrystals for Semitransparent Solar Cells, Adv. Energy Mater., 6, 1502317, 10.1002/aenm.201502317

Chiang, 2016, Bulk heterojunction perovskite–PCBM solar cells with high fill factor, Nat. Photonics, 10, 196, 10.1038/nphoton.2016.3

Wang, 2015, Bulk heterojunction perovskite hybrid solar cells with large fill factor, Energy Environ. Sci., 8, 1245, 10.1039/C5EE00222B

Liu, 2015, Efficient Solution-Processed Bulk Heterojunction Perovskite Hybrid Solar Cells, Adv. Energy Mater., 5, 1402024, 10.1002/aenm.201402024

Sun, 2015, Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance Planar-Heterojunction Perovskite Solar Cells, Small, 11, 3344, 10.1002/smll.201403344

Wang, 2016, Effects of Organic Cation Additives on the Fast Growth of Perovskite Thin Films for Efficient Planar Heterojunction Solar Cells, ACS Appl. Mater. Interfaces, 8, 24703, 10.1021/acsami.6b06633

Zhao, 2014, Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition, J. Am. Chem. Soc., 136, 12241, 10.1021/ja5071398

Mei, 2014, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science, 345, 295, 10.1126/science.1254763

Li, 2017, Mixed Cation FAxPEA1–xPbI3 with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells, Adv. Energy Mater., 7, 1601307, 10.1002/aenm.201601307

Boopathi, 2016, Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives, J. Mater. Chem. A Mater. Energy Sustain., 4, 1591, 10.1039/C5TA10288J

Abdi-Jalebi, 2016, Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite, Adv. Energy Mater., 6, 1502472, 10.1002/aenm.201502472

Chen, 2015, Nonvolatile chlorinated additives adversely influence CH3NH3PbI3 based planar solar cells, J. Mater. Chem. A Mater. Energy Sustain., 3, 9137, 10.1039/C5TA01198A

Kumar, 2014, Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation, Adv. Mater., 26, 7122, 10.1002/adma.201401991

Heo, 2015, Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate, Adv. Mater., 27, 3424, 10.1002/adma.201500048

Lee, 2016, Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex, J. Am. Chem. Soc., 138, 3974, 10.1021/jacs.6b00142

Huang, 2016, Hydrobromic acid assisted crystallization of MAPbI3-xClx for enhanced power conversion efficiency in perovskite solar cells, RSC Advances, 6, 55720, 10.1039/C6RA07536C

Bassiri-Gharb, 2014, Chemical solution growth of ferroelectric oxide thin films and nanostructures, Chem. Soc. Rev., 43, 2125, 10.1039/C3CS60250H

Chen, 2015, Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl, Chem. Mater., 27, 1448, 10.1021/acs.chemmater.5b00041

Qin, 2017, Multifunctional Benzoquinone Additive for Efficient and Stable Planar Perovskite Solar Cells, Adv. Mater., 29, 1603808, 10.1002/adma.201603808

Li, 2016, Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles, Energy Environ. Sci., 9, 1282, 10.1039/C5EE03229F

Kulbak, 2015, How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells, J. Phys. Chem. Lett., 6, 2452, 10.1021/acs.jpclett.5b00968

Lee, 2015, Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell, Adv. Energy Mater., 5, 1501310, 10.1002/aenm.201501310

Choi, 2014, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy, 7, 80, 10.1016/j.nanoen.2014.04.017

Saliba, 2016, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, 1989, 10.1039/C5EE03874J

Yadav, 2017, The Role of Rubidium in Multiple-Cation-Based High-Efficiency Perovskite Solar Cells, Adv. Mater., 29, 1701077, 10.1002/adma.201701077

Bella, 2016, Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers, Science, 354, 203, 10.1126/science.aah4046

Zhang, 2017, High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching, ACS Energy Lett., 2, 438, 10.1021/acsenergylett.6b00697

Jodlowski, 2017, Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells, Nat. Energy, 2, 972, 10.1038/s41560-017-0054-3

Giorgi, 2015, Organic−Inorganic Hybrid Lead Iodide Perovskite Featuring Zero Dipole Moment Guanidinium Cations: A Theoretical Analysis, J. Phys. Chem. C, 119, 4694, 10.1021/acs.jpcc.5b00051

Nazarenko, 2018, Guanidinium-Formamidinium Lead Iodide: A Layered Perovskite-Related Compound with Red Luminescence at Room Temperature, J. Am. Chem. Soc., 140, 3850, 10.1021/jacs.8b00194

Son, 2016, Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells, Nat. Energy, 1, 16081, 10.1038/nenergy.2016.81

Saladoa, 2018, Surface passivation of perovskite layers using heterocyclic halides: Improved photovoltaic properties and intrinsic stability, Nano Energy, 50, 220, 10.1016/j.nanoen.2018.05.035

Wang, 2016, Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High-Efficiency and Air-Stable Photovoltaic Cells, Adv. Mater., 28, 9986, 10.1002/adma.201603062

Salado, 2017, Towards Extending Solar Cell Lifetimes: Addition of a Fluorous Cation to Triple Cation-Based Perovskite Films, ChemSusChem, 10, 3846, 10.1002/cssc.201700797

Deepa, 2016, Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites, ChemPhysChem, 17, 913, 10.1002/cphc.201500717

Son, 2018, Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering, J. Am. Chem. Soc., 140, 1358, 10.1021/jacs.7b10430

Wang, 2015, Additive-Modulated Evolution of HC(NH2)2PbI3 Black Polymorph for Mesoscopic Perovskite Solar Cells, Chem. Mater., 27, 7149, 10.1021/acs.chemmater.5b03169

Xie, 2017, Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells, Energy Environ. Sci., 10, 1942, 10.1039/C7EE01675A

Mu, 2017, Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbI3−xClx) for Planar Heterojunction Perovskite Solar Cells, Adv. Energy Mater., 7, 1601297, 10.1002/aenm.201601297

Qing, 2018, Aligned and Graded Type-II Ruddlesden–Popper Perovskite Films for Efficient Solar Cells, Adv. Energy Mater., 8, 1800185, 10.1002/aenm.201800185

Li, 2016, Ion-Exchange-Induced 2D-3D Conversion of HMA1-x FAx PbI3 Cl Perovskite into a High-Quality MA1-x FAx PbI3 Perovskite, Angew. Chem. Int. Ed. Engl., 55, 13460, 10.1002/anie.201606801

Li, 2016, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells, Science, 353, 58, 10.1126/science.aaf8060

Frost, 2014, Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano Lett., 14, 2584, 10.1021/nl500390f

Jeon, 2015, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, 476, 10.1038/nature14133

Zhumekenov, 2016, Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length, ACS Energy Lett., 1, 32, 10.1021/acsenergylett.6b00002

Nazarenko, 2017, Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry, NPG Asia Mater., 9, e373, 10.1038/am.2017.45

Kern, 1987, 1

Kavan, 1995, Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis, Electrochim. Acta, 40, 643, 10.1016/0013-4686(95)90400-W

Clark, 2005, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater., 220, 567, 10.1524/zkri.220.5.567.65075

Materials Studio (2018). BIOVIA Inc (San Diego, CA).

Perdew, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Kleinman, 1982, Efficacious Form for Model Pseudopotentials, Phys. Rev. Lett., 48, 1425, 10.1103/PhysRevLett.48.1425

Tkatchenko, 2009, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett., 102, 073005, 10.1103/PhysRevLett.102.073005

Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188