Methyl-binding domain protein-based DNA isolation from human blood serum combines DNA analyses and serum-autoantibody testing

BMC Clinical Pathology - Tập 11 Số 1 - 2011
Matthias Wielscher1, Walter Pulverer1, Johannes R. Peham1, Manuela Hofner1, Christine F Rappaport2, Christian Singer2, Christof Jungbauer3, Christa Nöhammer1, Andreas Weinhäusel1
1Molecular Medicine, Austrian Institute of Technology, Vienna, Austria
2Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
3Blood Donation Center for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria

Tóm tắt

Abstract Background

Circulating cell free DNA in serum as well as serum-autoantibodies and the serum proteome have great potential to contribute to early cancer diagnostics via non invasive blood tests. However, most DNA preparation protocols destroy the protein fraction and therefore do not allow subsequent protein analyses. In this study a novel approach based on methyl binding domain protein (MBD) is described to overcome the technical difficulties of combining DNA and protein analysis out of one single serum sample.

Methods

Serum or plasma samples from 98 control individuals and 54 breast cancer patients were evaluated upon silica membrane- or MBD affinity-based DNA isolation via qPCR targeting potential DNA methylation markers as well as by protein-microarrays for tumor-autoantibody testing.

Results

In control individuals, an average DNA level of 22.8 ± 25.7 ng/ml was detected applying the silica membrane based protocol and 8.5 ± 7.5 ng/ml using the MBD-approach, both values strongly dependent on the serum sample preparation methods used. In contrast to malignant and benign tumor serum samples, cell free DNA concentrations were significantly elevated in sera of metastasizing breast cancer patients. Technical evaluation revealed that serum upon MBD-based DNA isolation is suitable for protein-array analyses when data are consistent to untreated serum samples.

Conclusion

MBD affinity purification allows DNA isolations under native conditions retaining the protein function, thus for example enabling combined analyses of DNA methylation and autoantigene-profiles from the same serum sample and thereby improving minimal invasive diagnostics.

Từ khóa


Tài liệu tham khảo

Lo YM, Chiu RW: Next-generation sequencing of plasma/serum DNA: an emerging research and molecular diagnostic tool. Clin Chem. 2009, 55: 607-608. 10.1373/clinchem.2009.123661.

Dobrzycka B, Terlikowski SJ, Mazurek A, Kowalczuk O, Niklinska W, Chyczewski L, Kulikowski M: Circulating free DNA, p53 antibody and mutations of KRAS gene in endometrial cancer. Int J Cancer. 2009

Fleischhacker M, Schmidt B: Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta. 2007, 1775: 181-232.

Anker P, Mulcahy H, Chen XQ, Stroun M: Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev. 1999, 18: 65-73. 10.1023/A:1006260319913.

Wang BG, Huang HY, Chen YC, Bristow RE, Kassauei K, Cheng CC, Roden R, Sokoll LJ, Chan DW, Shih I: Increased plasma DNA integrity in cancer patients. Cancer Res. 2003, 63: 3966-3968.

Elrick MM, Walgren JL, Mitchell MD, Thompson DC: Proteomics: recent applications and new technologies. Basic Clin Pharmacol Toxicol. 2006, 98: 432-441. 10.1111/j.1742-7843.2006.pto_391.x.

Anker P, Mulcahy H, Stroun M: Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: time for large-scale clinical studies?. Int J Cancer. 2003, 103: 149-152. 10.1002/ijc.10791.

Schaub NP, Jones KJ, Nyalwidhe JO, Cazares LH, Karbassi ID, Semmes OJ, Feliberti EC, Perry RR, Drake RR: Serum proteomic biomarker discovery reflective of stage and obesity in breast cancer patients. J Am Coll Surg. 2009, 208: 970-978. 10.1016/j.jamcollsurg.2008.12.024.

Kijanka G, Murphy D: Protein arrays as tools for serum autoantibody marker discovery in cancer. J Proteomics. 2009, 72: 936-944. 10.1016/j.jprot.2009.02.006.

Anderson KS, Wong J, Vitonis A, Crum CP, Sluss PM, Labaer J, Cramer D: p53 autoantibodies as potential detection and prognostic biomarkers in serous ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2010, 19: 859-868. 10.1158/1055-9965.EPI-09-0880.

Wu TL, Zhang D, Chia JH, Tsao KH, Sun CF, Wu JT: Cell-free DNA: measurement in various carcinomas and establishment of normal reference range. Clin Chim Acta. 2002, 321: 77-87. 10.1016/S0009-8981(02)00091-8.

Seefeld M, El TS, Fan AX, Hahn S, Holzgreve W, Zhong XY: Parallel assessment of circulatory cell-free DNA by PCR and nucleosomes by ELISA in breast tumors. Int J Biol Markers. 2008, 23: 69-73.

Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A: Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 1992, 69: 905-914. 10.1016/0092-8674(92)90610-O.

Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998, 19: 187-191. 10.1038/561.

Weitzel JM, Buhrmester H, Stratling WH: Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol Cell Biol. 1997, 17: 5656-5666.

Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP: DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell. 2005, 19: 667-678. 10.1016/j.molcel.2005.07.021.

Cross SH, Charlton JA, Nan X, Bird AP: Purification of CpG islands using a methylated DNA binding column. Nat Genet. 1994, 6: 236-244. 10.1038/ng0394-236.

Shiraishi M, Chuu YH, Sekiya T: Isolation of DNA fragments associated with methylated CpG islands in human adenocarcinomas of the lung using a methylated DNA binding column and denaturing gradient gel electrophoresis. Proc Natl Acad Sci USA. 1999, 96: 2913-2918. 10.1073/pnas.96.6.2913.

Serre D, Lee BH, Ting AH: MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 2010, 38: 391-399. 10.1093/nar/gkp992.

Zou H, Harrington J, Rego RL, Ahlquist DA: A novel method to capture methylated human DNA from stool: implications for colorectal cancer screening. Clin Chem. 2007, 53: 1646-1651. 10.1373/clinchem.2007.086223.

Yu Y, Blair S, Gillespie D, Jensen R, Myszka D, Badran AH, Ghosh I, Chagovetz A: Direct DNA methylation profiling using methyl binding domain proteins. Anal Chem. 2010, 82: 5012-5019. 10.1021/ac1010316.

Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG: Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res. 2006, 34: e19-10.1093/nar/gnj022.

Zanetti-Dallenbach R, Wight E, Fan AX, Lapaire O, Hahn S, Holzgreve W, Zhong XY: Positive correlation of cell-free DNA in plasma/serum in patients with malignant and benign breast disease. Anticancer Res. 2008, 28: 921-925.

Cross SH, Charlton JA, Nan X, Bird AP: Purification of CpG islands using a methylated DNA binding column. Nat Genet. 1994, 6: 236-244. 10.1038/ng0394-236.

Muller HM, Widschwendter A, Fiegl H, Ivarsson L, Goebel G, Perkmann E, Marth C, Widschwendter M: DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res. 2003, 63: 7641-7645.

Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y: Analysis of Gene Expression Data Using BRB-Array Tools. Cancer Inform. 2007, 3: 11-17.

Weinhaeusel A, Thiele S, Hofner M, Hiort O, Noehammer C: PCR-based analysis of differentially methylated regions of GNAS enables convenient diagnostic testing of pseudohypoparathyroidism type Ib. Clin Chem. 2008, 54: 1537-1545. 10.1373/clinchem.2008.104216.

Zhong XY, Hahn S, Kiefer V, Holzgreve W: Is the quantity of circulatory cell-free DNA in human plasma and serum samples associated with gender, age and frequency of blood donations?. Ann Hematol. 2007, 86: 139-143.

Gahan PB, Swaminathan R: Circulating nucleic acids in plasma and serum. Recent developments. Ann N Y Acad Sci. 2008, 1137: 1-6. 10.1196/annals.1448.050.

Nygaard V, Hovig E: Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res. 2006, 34: 996-1014. 10.1093/nar/gkj499.

Ho KL, McNae IW, Schmiedeberg L, Klose RJ, Bird AP, Walkinshaw MD: MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol Cell. 2008, 29: 525-531. 10.1016/j.molcel.2007.12.028.

Jang JS, Lee SJ, Choi JE, Cha SI, Lee EB, Park TI, Kim CH, Lee WK, Kam S, Choi JY, Kang YM, Park RW, Kim IS, Cho YL, Jung TH, Han SB, Park JY: Methyl-CpG binding domain 1 gene polymorphisms and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev. 2005, 14: 2474-2480. 10.1158/1055-9965.EPI-05-0423.

Holdenrieder S, Stieber P, Chan LY, Geiger S, Kremer A, Nagel D, Lo YM: Cell-free DNA in serum and plasma: comparison of ELISA and quantitative PCR. Clin Chem. 2005, 51: 1544-1546. 10.1373/clinchem.2005.049320.

Andriani F, Conte D, Mastrangelo T, Leon M, Ratcliffe C, Roz L, Pelosi G, Goldstraw P, Sozzi G, Pastorino U: Detecting lung cancer in plasma with the use of multiple genetic markers. Int J Cancer. 2004, 108: 91-96. 10.1002/ijc.11510.

Kohler C, Radpour R, Barekati Z, Asadollahi R, Bitzer J, Wight E, Burki N, Diesch C, Holzgreve W, Zhong XY: Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer. 2009, 8: 105-10.1186/1476-4598-8-105.

Van dA, Elst HJ, Van Laere SJ, Maes H, Huget P, van DP, Van Marck EA, Vermeulen PB, Dirix LY: The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer. 2009, 100: 1277-1286. 10.1038/sj.bjc.6605013.

Tokuhisa Y, Iizuka N, Sakaida I, Moribe T, Fujita N, Miura T, Tamatsukuri S, Ishitsuka H, Uchida K, Terai S, Sakamoto K, Tamesa T, Oka M: Circulating cell-free DNA as a predictive marker for distant metastasis of hepatitis C virus-related hepatocellular carcinoma. Br J Cancer. 2007, 97: 1399-1403. 10.1038/sj.bjc.6604034.

Ionov Y: A high throughput method for identifying personalized tumor-associated antigens. Oncotarget. 2010, 1: 148-155.

Ludwig N, Keller A, Comtesse N, Rheinheimer S, Pallasch C, Fischer U, Fassbender K, Steudel WI, Lenhof HP, Meese E: Pattern of serum autoantibodies allows accurate distinction between a tumor and pathologies of the same organ. Clin Cancer Res. 2008, 14: 4767-4774. 10.1158/1078-0432.CCR-07-4715.