Methods, results and dose consequences of 106Ru detection in the environment in Budapest, Hungary

Journal of Environmental Radioactivity - Tập 192 - Trang 543-550 - 2018
Dorottya Jakab1, Gáborné Endrődi1, András Kocsonya1, Annamária Pántya1, Tamás Pázmándi1, Péter Zagyvai1
1Hungarian Academy of Sciences Centre for Energy Research, 29-33 Konkoly-Thege Miklós Street, H-1121, Budapest, Hungary

Tài liệu tham khảo

Andersson, 1994, The behaviour of chernobyl 137Cs, 134Cs and 106Ru in undisturbed soil: implications for external radiation, J. Environ. Radioact., 22, 183, 10.1016/0265-931X(94)90080-9 Audi, 2017, The NUBASE2016 evaluation of nuclear properties, Chin. Phys. C, 41, 10.1088/1674-1137/41/3/030001 Backman, 2005, On the transport and speciation of ruthenium in high temperature oxidising conditions, Radiochim. Acta, 93, 297, 10.1524/ract.93.5.297.64280 Bé, 2016, Vol. 8 Beiriger, 1988, Radioactive fallout from the chernobyl nuclear reactor accident, J. Radioanal. Nucl. Chem., 123, 21, 10.1007/BF02036380 De Frenne, 2009, Nuclear data Sheets for A = 103, Nucl. Data Sheets, 110, 2081, 10.1016/j.nds.2009.08.002 1993 Gilmore, 2008 Govt decree 489/2015, 2015 Hult, 2017, Detection of 106Ru, via the decay of its daughter 106Rh 2004 2015 2007 2012 2018 Kärkelä, 2017, Ruthenium transport in an RCS with airborne CsI, Prog. Nucl. Energy, 99, 38, 10.1016/j.pnucene.2017.04.019 Kashparov, 2003, Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout, Sci. Total Environ., 317, 105, 10.1016/S0048-9697(03)00336-X Kleykamp, 1988, The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle, Nucl. Technol., 80, 412, 10.13182/NT88-A34065 Koning, 2006 Krouglov, 1998, Chemical fractionation of 90Sr, 106Ru, 137Cs and 144Ce in Chernobyl-contaminated soils: an evolution in the course of time, J. Environ. Radioact., 38, 59, 10.1016/S0265-931X(97)00022-2 Kryshev, 1995, Radioactive contamination of aquatic ecosystems following the Chernobyl accident, J. Environ. Radioact., 27, 207, 10.1016/0265-931X(94)00042-U 2005 Paatero, 2007, Deposition of Sb-125, Ru-106, Ce-144, Cs-134 and Cs-137 in Finland after the chernobyl accident, Boreal Environ. Res., 12, 43 Pontillon, 2010, Behaviour of fission products under severe PWR accident conditions. The VERCORS experimental programme—Part 3: release of low-volatile fission products and actinides, Nucl. Eng. Des., 240, 1867, 10.1016/j.nucengdes.2009.06.025 Schulz, 1984 Steinhauser, 2014, Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts, Sci. Total Environ., 470–471, 800, 10.1016/j.scitotenv.2013.10.029 Thakur, 2013, An overview of Fukushima radionuclides measured in the northern hemisphere, Sci. Total Environ., 458–460, 577, 10.1016/j.scitotenv.2013.03.105 2000, Vol. II, 453 Whitehead, 1988, Air radionuclide patterns observed at Monaco from the Chernobyl accident, J. Environ. Radioact., 7, 249, 10.1016/0265-931X(88)90031-8