Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review

Journal of Plant Nutrition and Soil Science - Tập 176 Số 2 - Trang 175-199 - 2013
Valerie Vranová1, Klement Rejšek1, Keith R. Skene2, Dalibor Janouš3, Pavel Formánek1
1Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00, Czech Republic
2Biosphere Research Institute, Letham, Angus DD8 2PY, Scotland
3CzechGlobe – Global Change Research Centre AS CR, v.v.i., Bělidla 686/4a, 603 00 Brno, Czech Republic

Tóm tắt

AbstractThe aim of this work is to review the current knowledge on the effects of plant metabolism (C3, C4, and CAM) on root exudation and on the methods of exudate collection as well as the use of such exudates for analyses, testing of microbial response, degradation of pollutants, enzymatic activities, and occurrence of allelochemicals. We examine the advantages and disadvantages of each method as related to the downstream use of the exudates. The use of continuous percolation of solid cultivation medium with adjustment of nutrient‐solution strength appears to be a promising methodology for the determination of root exudation rates and qualitative composition of exuded compounds. The method mimics rhizosphere conditions, minimizing the artificial accumulation of compounds, alteration of plasma‐membrane permeability, ATPase activity, and the impacts of inhibitors or stimulators of root enzymes. Of particular significance is the fact that the adjustment of strength of nutrient solution and percolation enables universal and also long‐term use of the method, allowing high exudation yield by minimizing influx and maximizing efflux rates of exuded compounds at high nutrient‐solution strength. Furthermore, it facilitates assessment of the effect on soil microbial populations and their ability to degrade pollutants. Enzymatic activities can be assessed when a low strength of nutrient solution is used, with percolation of the exudates directly into tested soils. Composition of root exudates, regulation of root enzymes, and plant response to nutrient deficiency can be assessed by measuring net efflux or influx rates. The impact of heavy metals and other type of mechanical, chemical, and biological stresses differs according to the type of plant metabolism. This has significant consequences on transformations in plant communities, both structurally and functionally, and impacts upon crop nutrition, with respect to global climate change, and the use of plants for phytoremediation purposes. Understanding the effects of different types of plant metabolism on root exudation with respect to genetic regulation of synthetic pathways through root enzymes and transport systems presents an important direction for future research.

Từ khóa


Tài liệu tham khảo

10.1016/S0016-7061(98)00030-5

10.1016/j.postharvbio.2007.08.001

Al‐Hakimi A. M. A., 2007, Thiamin and salicylic acid as biological alternatives for controlling broad bean rot disease., J. Appl. Sci. Environ. Manage., 11, 125

10.1016/j.procbio.2007.05.024

10.1023/A:1011931831273

10.1556/AAgr.49.2001.1.5

10.1016/j.watres.2011.08.011

10.1002/rcm.4907

10.1007/BF00329431

Aranibar J. N. Macko S. A. Anderson I. C. Epstein H. E. Feral C. J. Hipondoka M. Potgieter A. Shugart H. H.(2001): Does nutrient dynamics determine C3‐C4plant abundance in southern African ecosystems? SAO/NASA ADS Physics Abstract Service. Available at:http://adsabs.harvard.edu/abs/2001AGUFM.A51A0023A

10.1104/pp.112.4.1471

10.4161/psb.5.7.11773

10.1016/S0304-4238(03)00098-0

10.1016/j.plantsci.2003.10.024

10.1016/S0168-9452(00)00391-5

10.1055/s-2001-12905

10.1023/A:1004817212321

10.1016/j.plaphy.2004.10.003

10.1007/BF02277944

10.1016/j.pedobi.2005.06.008

10.1023/A:1022888900465

10.1146/annurev.arplant.57.032905.105159

10.1093/jxb/erq335

Bandiera M.(2010): Improving phytoremediation efficiency in metal‐polluted wastes. Ph.D. Thesis Univesity of Padova Italy; available at:http://paduaresearch.cab.unipd.it/2577/1/Bandiera_Marianna_PhD_Thesis_2010.pdf

Bao T. Sun T. H. Sun L. N.(2009): Fe‐deficiency induces low molecular weight organic acids exude at different cadmium concentrations. Bioinformatic and Biomedical Engineering 2009. ICBBE 2009. 3rd International Conference Beijing June 11–13 2009 pp. 1–4.

Bao T., 2011, The effects of Fe deficiency on low molecular weight organic acid exudation and cadmium uptake by Solanum nigrum L., Acta Agr. Scand. B, 61, 305

10.1111/j.1469-8137.1974.tb04604.x

10.1016/j.jplph.2006.03.009

10.1104/pp.99.1.34

10.1016/j.jplph.2009.07.014

10.1016/j.jplph.2007.05.003

10.1016/S0038-0717(03)00179-2

10.1016/S0038-0717(03)00179-2

10.1111/j.1747-0765.2005.tb00058.x

10.1016/j.soilbio.2006.12.026

10.1073/pnas.0707198104

10.1016/j.soilbio.2008.04.019

Black A. S., 1982, Ionic strength of soil solution and its effect on charge properties of some New Zealand soils., Eur. J. Soil Sci., 33, 149

10.1007/BF00011330

10.1078/0176-1617-00973

10.1016/j.tplants.2007.03.009

10.1016/j.soilbio.2007.09.007

Brimecombe M. J. De Lleij F. A. A. M. Lynch J. M.(2007): Rhizodeposition and microbial populations in Pinton R. Varanini Z. Nannipieri P. (eds.): The rhizosphere: Biochemistry and organic substances at the soil‐plant interface. CRC Press Taylor and Francis Group Boca Raton pp. 73–109.

10.1078/0176-1617-0774

10.1016/j.tplants.2006.09.011

10.1128/AEM.02188-07

10.2135/cropsci1978.0011183X001800010025x

10.1006/qres.2000.2199

10.1016/S0098-8472(02)00087-4

10.1016/j.jinorgbio.2011.04.004

10.1016/S0176-1617(88)80120-2

10.1111/j.1399-3054.1988.tb09214.x

10.1080/01904169609365142

10.1002/jctb.742

10.1016/S0981-9428(02)01447-X

10.1016/0016-7037(78)90117-5

10.1002/jpln.201000085

10.1016/S0304-4238(03)00095-5

10.1007/BF02184316

Chaffai R. Tekitek A. Marzouk B. El Ferjani E.(2007): Altered fatty acid profile of polar lipids in maize seedlings in response to excess copper. Botany and Plant Biology Joint Congress. Abstract. Available at:http://2007.botanyconference.org/engine/search/index.php?func=detail&aid=1167

10.1080/00103629309368797

10.3724/SP.J.1006.2008.00612

10.1111/j.1365-313X.2008.03652.x

10.1016/j.plantsci.2003.08.015

10.1111/j.1744-7909.2010.00948.x

10.1104/pp.111.175174

10.1016/j.enzmictec.2011.06.002

10.1016/S0031-9422(02)00749-5

10.1007/s11270-008-9678-z

10.2138/am-2004-0716

10.1007/BF00963820

10.1016/j.scienta.2010.08.004

10.1016/j.tree.2006.02.005

Curl E. A. Truelove B.(1986): The Rhizosphere. Springer‐Verlag New York.

10.1016/j.jplph.2004.07.017

10.1023/A:1020809400075

10.1007/s11104-010-0402-6

10.1016/0038-0717(94)90197-X

de Andrade M. L. R., 1997, Stimulation of organic acid excretion by roots of aluminium‐tolerant and aluminium‐sensitive wheat varieties under aluminium stress., R. Bras. Fisiol. Veg., 9, 27

10.1016/j.plaphy.2010.09.023

10.1016/j.scienta.2008.04.006

10.1126/science.276.5318.1566

10.1016/j.envexpbot.2004.06.004

10.1104/pp.103.3.695

10.1016/S0168-9452(01)00426-5

10.1111/j.1574-6941.2010.00860.x

10.1046/j.1365-2486.2003.00579.x

10.1007/s11104-007-9427-x

10.1104/pp.104.046995

10.1016/j.soilbio.2007.03.026

10.1016/S0045-6535(01)00108-4

10.1080/01904168709363636

Egle K., 2003, Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply., Agron. Sustain. Dev., 23, 511

10.1016/j.soilbio.2010.02.003

10.1007/BF00997160

El‐Baz F. K., 2004, Alteration in root exudates level during Fe‐deficiency in two cucumber cultivars., Int. J. Agr. Biol., 6, 45

10.1002/jpln.200700005

Elias K. S., 1987, Hyphal elongation of Glomus fasciculatus in response to root exudates., Appl. Environ. Microbiol., 53, 1928, 10.1128/aem.53.8.1928-1933.1987

10.1016/S0981-9428(02)00025-6

10.1104/pp.36.4.437

10.1016/S0098-8472(00)00068-X

10.1016/S0031-9422(01)00007-3

10.1016/j.scienta.2011.08.018

10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2

10.1385/BTER:104:2:185

10.1111/j.1469-8137.1982.tb03375.x

10.1139/b11-075

10.1016/j.phytochem.2009.04.023

10.1016/0168-9452(92)90177-N

10.1016/j.soilbio.2009.10.015

10.1002/rcm.1424

Formanek P. Ambus P.(2006): Differentiated respiration of an external carbon source at contrasting soil depths and temperature in a Beech forest soil in Newton J.: The 5thInternational Conference on Applications of Stable Isotope Techniques to Ecological Studies Belfast UK p. 133.

Formanek P., 2009, Amino acids in root exudates of Miscanthus × Giganteus., Amino Acids, 37, 49

10.1104/pp.96.4.1228

10.1016/j.fcr.2009.09.005

10.1007/s00572-003-0256-3

10.1094/Phyto-82-320

10.1007/s00572-009-0265-y

10.1016/j.plantsci.2011.01.022

10.1023/A:1004824019289

10.1023/A:1010535132296

Gaworzewska E. T., 1982, Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants., J. Gen. Microbiol., 128, 1179

10.1016/j.envexpbot.2009.05.004

10.1016/j.envexpbot.2008.05.002

10.1002/jpln.19941570408

Geâler A., 2004, Regulation of nitrate uptake at the whole‐tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism., Tree Physiol., 24, 1313, 10.1093/treephys/24.12.1313

10.1016/j.jplph.2009.10.012

10.1071/FP07256

10.1023/B:PLSO.0000030182.11473.3b

10.1104/pp.90.4.1298

10.1016/j.jplph.2007.01.014

Gillson L., 2004, Interpretation of soil δ13C as an indicator of vegetation change in African savannas., J. Veg. Sci., 15, 339, 10.1111/j.1654-1103.2004.tb02270.x

Glass A. D. M., 2002, The regulation of nitrate and ammonium transport systems in plants., J. Exp. Botany, 53, 855, 10.1093/jexbot/53.370.855

10.1016/j.apsoil.2009.04.001

10.1016/j.plaphy.2011.03.007

10.1016/j.scitotenv.2009.04.037

10.1111/j.1469-8137.2004.01258.x

10.1016/S0304-4238(01)00345-4

Gransee A., 2001, Effects of root exudates on nutrient availability in the rhizosphere. Development., Plant Soil Sci., 92, 626

10.1002/1522-2624(200008)163:4<381::AID-JPLN381>3.0.CO;2-7

10.1016/S0929-1393(96)00126-6

10.1023/A:1004316416034

10.1104/pp.43.4.484

10.1016/j.ejsobi.2009.06.003

10.1631/jzus.B0820373

10.1016/j.scienta.2007.03.009

10.1016/S1002-0160(07)60060-5

10.1016/j.soilbio.2007.03.014

10.1007/s004420050026

10.1016/j.envexpbot.2004.07.001

10.1016/j.indcrop.2009.09.007

10.1093/jxb/47.4.497

10.1016/j.soilbio.2008.08.007

10.1007/s12033-009-9162-z

10.1186/1471-2229-4-4

10.1016/S1360-1385(98)01233-3

10.1093/jxb/erg188

10.1007/s00442-008-1234-4

10.1104/pp.74.1.16

10.1016/j.jplph.2010.01.011

10.1021/es020695z

10.1023/A:1013351617532

10.1105/tpc.106.041012

10.1034/j.1399-3054.1998.1030216.x

10.1007/BF00029278

10.1093/jexbot/48.315.1797

10.1016/S0038-0717(97)00269-1

10.1007/BF00582238

Hong D.(2005): Metal (lead zinc copper cadmium iron) uptake tolerance and radial oxygen loss in typical wetland plants. Ph.D. thesis Hong Kong Baptist University China available at:http://search.proquest.com/docview/305028667

10.1111/j.1365-3040.2009.02087.x

10.1016/j.phytochem.2010.02.015

10.1016/j.jplph.2007.10.016

10.1016/j.biotechadv.2011.01.003

10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C

10.3354/cr00921

10.1016/S0038-0717(97)00131-4

10.1016/j.envexpbot.2011.09.012

10.1023/A:1020659227650

10.1023/B:BIOP.0000022274.72111.12

Janicka‐Russak M.(2011): Plant plasma membrane H+‐ATPase in adaptation of plants to abiotic stresses in Shanker A. Venkateswarlu B. (eds.): Abiotic stress response in plants – physiological biochemical and genetic perspectives. In Tech pp. 198–218.

10.1016/j.envexpbot.2003.11.006

10.1016/j.envexpbot.2009.12.003

10.1007/BF02702596

10.1016/j.jplph.2010.08.010

Jin G., 1991, Dynamic course and property of permeability in plasma membrane of wheat leaves under low and non‐freezing temperature stress., Acta Phytophysiol. Scinica, 17, 295

10.1093/aob/mcq071

10.1016/j.soilbio.2009.02.016

10.1104/pp.104.2.657

10.1023/A:1004356007312

10.1016/S0038-0717(98)00167-9

10.1007/BF00010543

10.1007/BF00033935

10.1007/BF00155523

10.1016/j.soilbio.2004.08.008

10.1016/j.scienta.2003.08.011

10.1016/j.jcis.2005.01.104

10.1111/j.1399-3054.1979.tb02613.x

10.1016/j.plantsci.2007.10.001

10.1016/j.envexpbot.2006.12.008

10.1086/322890

10.1094/Phyto-63-226

10.1016/j.agee.2005.01.004

Kholodova V., 2011, Water status in Mesembryanthemum crystallinum under heavy metal stress., Environ. Exp. Bot., 71, 382

10.1093/jexbot/52.359.1339

10.1016/j.jbiosc.2009.06.018

10.1007/BF02143534

10.1111/j.1742-4658.2011.08370.x

10.1104/pp.126.1.397

10.1016/j.soilbio.2008.03.009

10.1016/S0038-0717(00)00058-4

10.1016/0038-0717(84)90025-7

10.1016/0304-4211(84)90021-X

10.1556/AChrom.21.2009.1.10

10.1104/pp.70.5.1283

10.1016/j.soilbio.2005.06.025

Kuzyakov Y., 2006, Glucose uptake by maize roots and its transformation in the rhizosphere., Soil Biol. Biochem., 38, 851, 10.1016/j.soilbio.2005.07.012

10.1002/jpln.200421703

10.1016/S0378-4290(97)00123-8

Lambers H. Chapin III F. S. Pons T. L.(1998): Plant Physiological Ecology. Springer New York.

10.1023/A:1014289121672

10.1007/s11104-009-0042-x

10.1016/0038-0717(93)90182-B

10.1046/j.1365-3040.2002.00936.x

10.1016/S0304-4238(98)00082-X

10.1111/j.1467-7652.2011.00606.x

10.4161/psb.2.1.3884

10.1016/j.plaphy.2010.05.005

10.1007/s11104-010-0334-1

10.1007/s11104-007-9249-x

10.1071/SR03087

10.1007/BF00337210

10.1016/j.jcis.2006.10.003

10.1081/ESE-200056163

10.1093/jxb/erm274

10.1007/s11248-009-9264-1

10.1034/j.1399-3054.2000.108002152.x

10.1016/j.jhazmat.2010.09.093

10.1016/j.tplants.2010.08.010

Liebersbach H., 2004, Roots regulate ion transport in the rhizosphere to counteract reduced mobility in dry soil., Plant Soil, 260, 79, 10.1023/B:PLSO.0000030191.92338.6a

10.1016/j.soilbio.2008.04.013

10.1007/s004420100693

10.1016/j.plantsci.2004.02.026

10.1080/00103620701548589

Liu B., 2009, Amino acids in watermelon root exudates and their effect on growth of Fusarium oxysporum f.sp. nevium., Allelopat. J., 23, 139

10.1016/j.plaphy.2008.05.006

Llano‐Sotelo J. M., 2010, Gas exchange in Paulownia species growing under different soil moisture conditions in the field., J. Environ. Biol., 31, 497

10.1016/0885-5765(87)90089-0

10.1016/S0168-9452(00)00347-2

10.1016/j.envexpbot.2008.11.010

10.1016/j.phytochem.2009.01.014

10.1016/j.ibiod.2011.07.003

10.1029/2000GL011459

10.1016/j.envexpbot.2007.05.007

10.1016/j.jhazmat.2011.09.031

10.1046/j.1462-2920.1999.00054.x

Lüttge U., 2001, The H+‐pumping V‐ATPase of higher plants: a resatile “eco‐anzyme” in response to environmental stress., Cell Biol. Mol. Lett., 6, 356

10.1093/pcp/41.4.383

10.1104/pp.117.3.753

Ma J. F. Zhang W. Zhao Z.(2001): Regulatory Mechanisms of Al‐Induced secretion of organic acids anions – Involvement of ABA in the Al‐induced secretion of oxalate in buckwheat in Horst W. J. et al. (eds.): Plant nutrition – Food security and sustainability of agro‐ecosystems. Kluwer Academic Publishers Dordrecht The Netherlands pp. 486–487.

10.1016/j.plaphy.2006.08.007

10.1038/ng2074

Maheswari M., 1990, Root exudate of tobacco (Nicotiana tabacum L.) as chemoattractant for Azospirillum., Curr. Sci., 59, 110

10.1016/S0098-8472(00)00066-6

10.1590/S0100-84042011000100003

10.1073/pnas.0506407102

10.1016/S0378-4290(97)00131-7

Martin J. K., 1980, Carbon loss from roots of wheat cultivars. Soil Biol., Biochem., 12, 551

10.1016/0038-0717(93)90147-4

10.1080/13102818.2009.10818423

10.1016/j.envpol.2008.01.022

10.1007/s004250100529

10.1016/0048-9697(92)90426-S

10.1104/pp.120.3.665

10.1111/j.1399-3054.2004.00372.x

10.1016/S0269-7491(99)00122-0

10.1111/j.1399-3054.1997.tb03445.x

10.1007/BF00011905

10.1007/BF00010488

10.1002/(SICI)1522-2624(199908)162:4<373::AID-JPLN373>3.0.CO;2-#

10.1016/j.tplants.2009.10.002

10.1016/j.jplph.2004.02.005

Minocha R. Minocha S. C.(2005): Effects of soil pH and aluminum on plant respiration in Lambers H. Ribas‐Carbo M. (eds.): Plant Respiration: From Cell to Ecosystem. Advances in Photosynthesis and Respiration. Vol 18 Springer Dordrecht The Netherlands pp. 159–176.

10.1104/pp.103.024422

10.2136/sssaj2005.0563

10.1104/pp.125.4.1978

10.1007/BF00638958

10.1080/01904168909364032

10.1016/j.ecss.2005.06.007

10.1016/j.ecss.2010.03.008

10.1002/jpln.19931560210

10.1007/BF00024993

10.1002/jpln.19891520217

10.1016/j.envexpbot.2009.03.001

10.1016/j.chemosphere.2008.11.011

10.1002/jpln.200320371

10.1016/j.plaphy.2011.09.010

10.1017/S0953756200002860

Naher U. A., 2009, Influence of root exudate carbon compounds of three rice genotypes on rhizosphere and endophytic diazotrophs., Pertanika J. Trop. Agric. Sci., 32, 209

10.1016/0031-9422(86)88001-3

10.1016/S0045-6535(97)00302-0

10.1016/S0045-6535(99)00488-9

10.1016/S0045-6535(01)00160-6

10.2136/sssaj2004.0401

10.1080/01904160903242342

10.1016/j.phytochem.2006.09.024

10.1007/BF00388165

10.1016/j.soilbio.2006.08.004

10.1023/A:1004380832118

Neumann G. Römheld V.(2007): The release of root exudates as affected by the plant physiological status in Pinton R. Varanini Z. Nannipieri P. (eds.): The Rhizosphere. Biochemistry and organic substances at the soil‐plant interface. CRC Press Taylor and Francis Group Boca Raton London New York pp. 23–72.

10.1007/s004250050572

Neumann G. George E. Römheld V.(2002): P‐deficiency induced root excretion of carboxylic acids and protons in different plant species. Poster Abstract. Soil Congress. Available at:http://natres.psu.ac.th/Link/SoilCongress/bdd/symp43/1294‐r.pdf

10.1104/pp.58.6.726

10.1007/s11104-004-4954-1

10.1017/S0953756299002191

10.1007/s00216-006-0842-2

10.1104/pp.83.3.681

10.1111/j.1365-2389.1978.tb02025.x

10.1104/pp.106.2.407

10.1002/etc.5620190416

10.1016/S0038-0717(00)00209-1

10.1016/j.soilbio.2005.06.019

10.1016/j.chemosphere.2005.11.003

10.1093/jexbot/51.349.1449

Paterson E. Yeomans C. Bailey D. Meharg A. A. Killham K.(1998): Use of a lux reporter system to quantify and dissect carbon flow through rhizosphere microbial communities. International Symposium of Microbial Ecology 8th (ISME 8) Halifax Nova Scotia Canada August 9–14 1998.

10.1046/j.1365-2486.1999.00267.x

10.1111/j.1365-3040.2005.01389.x

10.1023/A:1004877214831

10.1093/jxb/erm065

10.1104/pp.104.044222

10.1111/j.1365-2486.2006.01100.x

10.1093/treephys/tpp083

10.1111/j.1461-0248.2010.01570.x

10.1016/j.apsoil.2011.10.009

Pinton R. Varanini Z. Nannipieri P.(2007): The Rhizosphere: Biochemistry and organic substances at the soil‐plant interface. 1st edn. Taylor and Francis Group Boca Raton.

10.1104/pp.002295

10.1104/pp.111.175281

10.1016/S0168-9452(03)00089-X

10.1093/jxb/28.4.831

10.1007/BF00048146

Poynton C. Y. Vallee N. Ayalew M. Stewart Jr. C. N. Elless M. P.(2004): Enhanced lead accumulation trouhg transgenic expression of citrate synthase. Plant Biology Congress. Abstract. Available at:http://abstracts.aspb.org/pb2004/public/P31/7846.html

10.1007/BF02139643

Pusatjapong W. Kerdchoechuen O. Towprayoon S.(2003): Sugars and organic acids of root and root exudate from 4 rice varieties. Proceedings of the 2nd Regional Conference on Energy Technology Towards a Clean Environment February 12–14 2003 Phuket Thailand pp. 9–025. Available at:http://www.aseanbiotechnology.info/Abstract/22002885.pdf

10.1016/j.plantsci.2005.07.017

10.1016/j.envpol.2009.04.035

10.4161/psb.4.1.7487

10.1080/01904167.2011.558156

10.1016/j.soilbio.2009.10.019

Read D. Gregory P.(2007): The influence of root mucilages on the physical properties of the rhizosphere. Available at:http://natres.psu.ac.th/Link/SoilCongress/bdd/symp43/921‐r.pdf

10.1023/A:1004403812307

10.1046/j.1469-8137.2003.00665.x

10.1016/j.geoderma.2004.12.020

Reinhold B., 1985, Strain‐specific chemotaxis of Azospirillum spp., J. Bacteriol., 162, 190, 10.1128/jb.162.1.190-195.1985

10.1186/1471-2229-10-120

10.1016/j.febslet.2007.04.013

10.1016/j.envpol.2004.12.034

10.1016/S0098-8472(98)00041-0

10.1104/pp.82.1.41

10.1093/jxb/erm210

10.1104/pp.116.1.145

10.1111/j.1469-8137.2006.01639.x

Robinson J. B. Silburn D. M. Foley J. Orange D.(2010): Root zone soil moisture content in a Vertosol is accurately and conveniently measured by electromagnetic induction measurements with an EM38. 19th World Congress of Soil Science Soil Solutions for a Changing World. August 1–6 2010 Brisbane Australia pp. 78–81.

10.1111/j.1399-3054.1992.tb08763.x

10.1016/j.soilbio.2010.08.017

10.1093/aob/mcf040

10.1016/S1161-0301(01)00123-X

10.1016/S0168-9452(98)00230-1

10.1023/A:1022314010798

10.1007/s11104-005-0140-3

10.1023/A:1004701912815

Sadka A., 2000, Arsenite reduces acid content in citrus fruit, inhibits activity of citrate synthase but induces its gene expression., J. Am. Soc. Hor. Sci., 125, 288, 10.21273/JASHS.125.3.288

10.1016/j.jplph.2010.10.012

10.1023/A:1025882003661

10.1104/pp.84.3.959

10.1104/pp.85.2.355

10.1016/j.soilbio.2004.07.036

10.1016/S0168-9452(01)00373-9

10.1016/j.envexpbot.2009.03.009

10.1023/A:1020292623960

10.1007/s00572-006-0048-7

10.1093/jxb/32.3.459

10.1016/j.soilbio.2008.02.020

10.1270/jsbbs.60.297

10.1104/pp.93.2.566

Schönwitz R., 1982, Exudation of water soluble vitamins and some carbohydrates by intact roots of maize seedlings (Zea mays L.) into a mineral nutrient solution., Z. Planzenphysiol., 170, 7, 10.1016/S0044-328X(11)80003-6

10.1104/pp.73.3.761

10.1002/(SICI)1097-0231(19990715)13:13<1284::AID-RCM578>3.0.CO;2-0

10.1111/j.1365-3040.1992.tb00976.x

10.1371/journal.pone.0003350

Sharma P. Dubey R. S.(2005): Lead toxicity in plants. Braz. J. Plant Physiol. 17. Available at:http://dx.doi.org/10.1590/S1677‐04202005000100004

Sharma A. D., 2005, Short‐term waterlogging‐induced changes in phosphatase activities in shoots and roots of Sorghum seedlings: role of phosphatases during waterlogging in relation to phosphorus., Gen. Appl. Plant Physiol., 31, 71

10.1016/j.scienta.2011.03.016

10.1081/PLN-120003937

10.1016/S0098-8472(02)00009-6

10.1016/j.plantsci.2004.10.017

10.1007/BF00007922

10.1016/j.envexpbot.2010.08.010

10.1111/j.1574-6941.2011.01150.x

10.1016/j.plantsci.2007.02.006

10.1071/CP08215

10.1016/j.chemosphere.2009.11.028

Singh D., 2011, Organic acids of crop plants in aluminium detoxification., Curr. Sci., 100, 509

Singh B. K., 2004, Unravelling rhizospheremicrobial interactions: opportunities and limitations., Trends Plant Sci., 12, 386

Singh D., 2011, Developing aluminium‐tolerant crop plants using biotechnological tools., Curr. Sci., 100, 1807

10.1023/A:1022303201862

10.1104/pp.42.8.1131

Smith W. H., 1972, Influence of artificial defoliation on exudates of sugar maple. Soil Biol., Biochem., 4, 111

10.1111/j.1469-8137.1984.tb03618.x

10.1007/BF02370887

10.1002/pca.920

10.1016/j.plantsci.2007.08.006

10.1094/PHYTO.2003.93.1.127

10.1016/S1360-1385(02)02249-5

10.1007/s10658-008-9306-1

Steinkellner S., 2009, Root exudates as important factor in the Fusarium – host plant interaction., IOBC/WPRS Bulletin, 42, 165

10.1016/S0031-9422(03)00276-0

10.1002/1097-0231(20000815)14:15<1351::AID-RCM23>3.0.CO;2-9

10.1016/j.jhazmat.2009.11.124

Sun X., 2010, Long term water integration in interconnected ramets of stoloniferous grass, buffalograss., Afr. J. Biotechnol., 9, 5503

10.1111/j.1469-8137.2011.03699.x

10.1111/j.1365-3040.1990.tb01287.x

10.1016/j.jplph.2008.12.009

10.3923/ijpp.2010.1.12

10.1093/oxfordjournals.pcp.a029569

10.1016/j.envexpbot.2009.04.004

10.1016/j.envpol.2003.10.001

10.1007/s005720050214

10.1016/j.scitotenv.2011.06.049

10.1016/j.chemosphere.2009.03.040

10.1104/pp.010376

10.1111/j.1469-8137.2008.02647.x

10.1016/j.chemosphere.2005.01.023

Tian Q., 2008, Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots., J. Plant Physiol., 16, 942, 10.1016/j.jplph.2007.02.011

10.1080/01904167.2011.538285

10.1016/j.watres.2010.11.044

Traoré O., 2000, Effect of root mucilage and modelled root exudates on soil structure., Eur. J. Soil Sci., 51, 575, 10.1111/j.1365-2389.2000.00348.x

10.1007/BF02220801

10.1023/B:PLSO.0000016499.95722.16

10.4141/CJSS08021

10.1016/0038-0717(87)90052-6

Vancura V., 1969, Root exudates of reversibly wilted millet plants (Panicum Miliaceum L.)., Ecol. Plant, 4, 93

Vancura V., 1977, Some quantitative aspects of root exudation., Ecol. Bull., 25, 381

10.1007/s003740050325

10.1007/s00572-002-0219-0

10.1111/j.1365-3040.2011.02340.x

10.1016/S0168-9452(96)04560-8

10.1039/b510712a

10.3354/meps200077

10.1104/pp.102.019661

10.1023/A:1009879610785

10.1016/S0141-0229(97)00101-4

10.1021/jf061249o

10.1016/j.envpol.2005.12.006

10.1016/j.plantsci.2008.05.018

10.1016/j.soilbio.2007.11.011

10.1016/j.soilbio.2009.01.012

10.1111/j.1469-8137.2008.02397.x

10.1016/j.soilbio.2008.10.007

10.1016/S1002-0160(07)60047-2

10.2112/06-0765.1

10.1111/j.1365-3040.2005.01473.x

10.1104/pp.103.029306

10.1055/s-2006-923858

10.1016/S1002-0160(07)60047-2

10.1111/j.1365-2389.2006.00842.x

Xue Y. J., 2006, Negative regulation of aluminum‐responsive citrate efflux from roots of Cassia tora by an anion channel antagonist., Bot. Stud., 47, 137

10.1007/BF00295505

10.1104/pp.010869

10.1016/S1002-0160(07)60039-3

10.1007/s00425-003-0980-0

10.1016/j.plantsci.2004.02.012

10.1111/j.1365-3040.2005.01416.x

10.1016/j.plantsci.2010.11.011

10.1007/s00425-006-0410-1

10.1007/s00425-007-0600-5

10.1111/j.1469-8137.2008.02462.x

10.1016/S0038-0717(01)00102-X

10.1016/j.bse.2011.07.007

10.1023/B:JOEC.0000006413.98507.55

10.1007/s00726-004-0106-4

10.1590/S0103-50532002000500023

10.1016/j.envpol.2007.11.019

10.1007/s10705-010-9379-z

10.1104/pp.125.3.1459

10.1104/pp.104.046201

10.1111/j.1744-7909.2006.00346.x

10.1046/j.0028-646x.2001.00213.x

10.1016/j.biotechadv.2005.01.003

10.1111/j.1469-8137.2007.02037.x

10.1016/S1001-0742(08)62471-7

10.1016/j.plantsci.2005.05.030

10.1093/pcp/pci094

10.1007/s00572-009-0285-7

10.1016/0304-4238(94)90100-7