Methods for the segmentation and classification of breast ultrasound images: a review

Ademola E. Ilesanmi1, Utairat Chaumrattanakul2, Stanislav S. Makhanov1
1School of ICT, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
2Department of Radiology, Thammasat University, Pathum Thani, Thailand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Smistad E, Falch TL, Bozorgi M, Elster AC, Lindseth F (2015) Medical image segmentation on GPUs—a comprehensive review. Med Image Anal 20(1):1–18

Wang Z, Cui Z, Zhu Y (2020) Multi-modal medical image fusion by Laplacian pyramid and adaptive sparse representation. Comput Biol Med 123:103823

Huang Q, Luo Y, Zhang Q (2017) Breast ultrasound image segmentation: a survey. Int J CARS 12:493–507

Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

Xue Y, Xu T, Zhang H, Long LR, Huang X (2018) Segan: adversarial network with multi-scale l 1loss for medical image segmentation. Neuroinformatics 16:1–10

Catalano O, Varelli C, Sbordone C et al (2019) A bump: what to do next? Ultrasound imaging of superficial soft-tissue palpable lesions. J Ultrasound. https://doi.org/10.1007/s40477-019-00415

Carlino G, Rinaldi P, Giuliani M et al (2019) Ultrasound-guided preoperative localization of breast lesions: a good choice. J Ultrasound 22:85–94. https://doi.org/10.1007/s40477-018-0335-0

Alikhassi A, Azizi F, Ensani F (2020) Imaging features of granulomatous mastitis in 36 patients with new sonographic signs. J Ultrasound 23:61–68. https://doi.org/10.1007/s40477-019-00392

Pesce K, Binder F, Chico MJ, Swiecicki MP, Galindo DH (2020) S Terrasa (2020) Diagnostic performance of shear wave elastography in discriminatingmalignant and benign breast lesions. J Ultrasound 23:575–583. https://doi.org/10.1007/s40477-020-00481-8

Bartolotta TV, Orlando AAM, Spatafora L, Dimarco M, Gagliardo C, Taibbi A (2020) S-Detect characterization of focal breast lesions according to the US BI RADS lexicon: a pictorial essay. J Ultrasound 23:207–215. https://doi.org/10.1007/s40477-020-00447-w

Elia D, Fresilli D, Pacini P, Cardaccio S et al (2020) Can strain US-elastography with strain ratio (SRE) improve the diagnostic accuracy in the assessment of breast lesions? Preliminary results. J Ultrasound. https://doi.org/10.1007/s40477-020-00505-3

Guo R, Guolan Lu, Qin B, Fei B (2018) Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med Biol 44(1):37–70

Moon WK, Chienchang S, Huang CS, Chang R-F (2011) Breast tumor classification using fuzzy clustering for breast elastography. Ultrasound Med Biol 37(5):700–708

Di Segni M, De Soccio V, Cantisani V et al (2018) Automated classification of focal breast lesions according to S detect: validation and role as a clinical and teaching tool. J Ultrasound 21(2):105–118

Wu JY, Zhao ZZ, Zhang WY, Liang M, Ou B, Yang HY, Luo BM (2019) Computer-aided diagnosis of solid breast lesions with ultrasound: factors associated with false-negative and false-positive results. J Ultrasound Med. https://doi.org/10.1002/jum.15020

Caballo M, Pangallo DR, Mann RM, Sechopoulos I (2020) Deep learning-based segmentation of breast masses in dedicated breast CT imaging: radiomic feature stability between radiologists and artificial intelligence. Comput Biol Med 118:103629

Sudarshan VK, Mookiah MRK, Acharya U, Chandran V, Molinari F, Fujita H, Ng KH (2016) Application of wavelet techniques for cancer diagnosis using ultrasound images: a review. Comput Biol Med 69:97–111

Maolood IY, Yea A, Lu S (2018) Thresholding for medical image segmentation for cancer using fuzzy entropy with level set algorithm. Open Med Warsaw 13:374–383

Khosravanian A, Rahmanimanesh M, Keshavarzi P, Mozaffari S (2021) Fast level set method for glioma brain tumor segmentation based on Superpixel fuzzy clustering and lattice Boltzmann method. Comput Methods Progr Biomed 198:105809

Ikedo Y, Fukuoka D, Hara T, Fujita H, Takada E, Endo T, Morita T (2007) Development of a fully automatic scheme for detection of masses in whole breast ultrasound images. Med Phys 34:4378–4388

Xu F, Xian M, Cheng H, Ding J, Zhang Y (2016) Unsupervised saliency estimation based on robust hypotheses. In: Proceedings of the IEEE WACV, pp 1–6.

Yap MH (2008) A novel algorithm for initial lesion detection in ultrasound breast images. J Appl Clin Med Phys 9:181–199

Joo S, Yang YS, Moon WK, Kim HC (2004) Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Trans Med Imaging 23:1292–1300

Shan J, Cheng HD, Wang YX (2008) A novel automatic seed point selection algorithm for breast ultrasound images. In: Proceedings of the ICPR, pp 3990–3993

Chang RF, Wu WJ, Moon WK, Chen DR (2005) Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat 89:179–185

Xian M, Cheng HD, Zhang Y (2014) A fully automatic breast ultrasound image segmentation approach based on neutro-connectedness. In: Proceedings of the ICPR, pp 2495–2500

Gómez-Flores W, Aruiz-Ortega B (2016) New fully automated method for segmentation of breast lesions on ultrasound based on texture analysis. Ultrasound Med Biol 42(7):1637–1650

Yu Y, Xiao Y, Cheng J, Chiu B (2018) Breast lesion classification based on supersonic shear-wave elastography and automated lesion segmentation from B-mode ultrasound images. Comput Biol Med 93:31–46

Fan H, Meng F, Liu Y, Kong F, Ma J, Lv Z (2019) A novel breast ultrasound image automated segmentation algorithm based on seeded region growing integrating gradual equipartition threshold. Multimed Tools Appl 78:27915–27932

Massich J, Meriaudeau F, Pérez E, Martí R, Oliver A, Martí J (2010) Lesion segmentation in breast sonography. In: Martí J, Oliver A, Freixenet J, Martí R (eds) IWDM 2010. LNCS, vol 6136. Springer, Heidelberg, pp 39–45

Shan J, Cheng HD, Wang Y (2012) Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 38(2):262–275

Kwak JI, Jung MN, Kim SH, Kim NC (2003) 3D segmentation of breast tumor in ultrasound images. In: Proceedings of the SPIE, MI, pp 193–200

Kwak JI, Kim SH, Kim NC (2005) RD-based seeded region growing for extraction of breast tumor in an ultrasound volume. In: Proceedings of the computational intelligence and security, Springer, pp 799–808

Madabhushi A, Metaxas DN (2003) Combining low, high level and empirical do- main knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans Med Imaging 22:155–169

Massich J, Meriaudeau F, Pérez E, Martí R, Oliver A, Martí J (2010) Lesion segmentation in breast sonography. In: Proceedings of the digital mammography, Springer, pp 39–45

Beucher S, Lantuéjoul C (1979) Use of watersheds in contour detection. In: Proceedings of the international workshop on image processing: real-time edge and motion detection/estimation, Rennes, France

Cousty J, Bertrand G, Najman L, Couprie M (2009) Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans Pattern Anal Mach Intell 31:1362–1374

Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. In: Mathematical morphology in image processing, Marcel Dekker Inc., New York, pp 433–481

Huang Y-L, Chen DR (2004) Watershed segmentation for breast tumor in 2-D sonography. Ultrasound Med Biol 30:625–632

Gomez W, Leija L, Alvarenga A, Infantosi A, Pereira W (2010) Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Med Phys 37(1):82–95

Lo CM, Chen RT, Chang YC, Yang YW, Hung MJ, Huang CS, Chang RF (2014) Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed. IEEE Trans Med Imaging 33:1503–1511

Gu P, Lee W, Roubidoux MA, Yuan J, Wang X, Carson PL (2016) Automated 3D ultrasound image segmentation to aid breast cancer image interpretation. Ultrasonics 65:51–58

Lee S, Huang Q, Jin L, Lu M, Wang T (2010) A graph-based, segmentation method for breast tumors in ultrasound images. In: Proceedings of IEEE iCBBE, pp 1–4

Zhang Q, Zhao X, Huang Q (2014) A multi-objectively-optimized graph-based segmentation method for breast ultrasound image. In: International conference on biomedical engineering and informatics, pp 116–120

Daoud MI, Atallah AA, Awwad F, Al-Najjar M, Alazrai R (2019) Automatic superpixel-based segmentation method for breast ultrasound images. Expert Syst Appl 121:78–96

Ilesanmi AE, Idowu OP, Makhanov SS (2020) Multiscale superpixel method for segmentation of breast ultrasound. Comput Biol Med 125:103879

Huang Q, Lee S, Liu L, Lu M, Jin L, Li A (2012) A robust graph-based segmentation method for breast tumors in ultrasoundimages. Ultrasonics 52:266–275

Huang Q, Bai X, Li Y, Jin L, Li X (2014) Optimized graph-based segmentation for ultrasound images. Neurocomputing 129:216–224

Zhou Z, Wu W, Wu S, Tsui P, Lin C, Zhang L, Wang T (2014) Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts. Ultrason Imaging 36(4):256–276

Xian M, Zhang Y, Cheng HD (2015) Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recogn 48:485–497

Ramadan H, Lachqar C, Tairi H (2020) Saliency-guided automatic detection and segmentation of tumor inbreast ultrasound images. Biomed Signal Process Control 60:101945

Karunanayake N, Aimmanee P, Lohitvisate W, Makhanov SS (2020) Particle method for segmentation of breast tumors in ultrasound images. Math Comput Simul 170:257–284

Keatmanee C, Chaumrattanakul U, Kotani K, Makhanov SS (2019) Initialization of active contours for segmentation of breast cancer via fusion of ultrasound Doppler, and elasticity images. Ultrasonics 94:438–453

Rodtook A, Kirimasthong K, Lohitvisate W, Makhanov SS (2018) Automatic initialization of active contours and level set method in ultrasound images of breast abnormalities. Pattern Recogn 79:172–182

Zhao W, Xu X, Liu P, Xu F, He L (2020) The improved level set evolution for ultrasound imagesegmentation in the high-intensity focused ultrasound ablationtherapy. Optik Int J Light Electron Opt 202:163669

Rodrigues R, Braz R, Pereira M, Moutinho J, Pinheiro AMG (2015) A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis. Ultrasound Biol Med 41(6):1737–1748

Wang W, Zhu L, Qin J, Chui Y, Li B, Heng P (2014) Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion. Opt Lasers Eng 54:105–116

Guo Y, Şengür A, Tian J-W (2015) A novel breast ultrasound image segmentation algorithm based on neutrosophic similarity score and level set. Comput Methods Progr Biomed 123:43–53

Panigrahi L, Verma K, Singh BK (2019) Ultrasound image segmentation using a novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution. Expert Syst Appl 115:486–498

Huang Q, Yang F, Liu L, Li X (2015) Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis. Inf Sci 314:293–310

Lang I, Levy MS, Spitzer H (2016) Multiscale texture-based level-set segmentation of breast B-mode images. Comput Biol Med 72:30–42

Huang Q, Huang Y, Luo Y, Yuan F, Li X (2020) Segmentation of breast ultrasound image with semantic classification of superpixels. Med Image Anal 61:101657

Lai Y, Huang Y, Wang D, Tiu C, Chou Y, Chang R (2013) Computer-aided diagnosis for 3-D power Doppler breast ultrasound. Ultrasound Med Biol 39(4):555–567

Moon WK, Chang S, Chang JM, Cho N, Huang C, Kuo J, Chang R (2013) Classification of breast tumors using elastographic and B-mode features: comparison of automatic selection of representative slice and physician-selected slice of images. Ultrasound Med Biol 39(7):1147–1157

Kriti, Virmani J, Agarwal R (2019) Effect of despeckle filtering on classification of breast tumors using ultrasound images. Biocybern Biomed Eng 39:536–560

Selvan S, Devi SS (2015) Automatic seed point selection in ultrasound echography images of breast using texture features. Biocybern Biomed Eng 35:157–168

Liu Y, Chen Y, Han B, Zhang Y, Zhang X, Su Y (2018) Fully automatic Breast ultrasound image segmentation based on fuzzy cellular automata framework. Biomed Signal Process Control 40:433–442

Moon WK, Chen I, Yi A, Bae MS, Shin SU, Chang R (2018) Computer-aided pre diction model for axillary lymph node metastasis in breast cancer using tumor morphological and textural features on ultrasound. Comput Methods Progr Biomed 162:129–137

Huang Y, Takada E, Konno S, Huang C, Kuo M, Chang R (2018) Computer-aided tumor diagnosis in 3-D breast elastography. Comput Methods Progr Biomed 153:201–209

Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J (2010) Probability density difference-based active contour for ultrasound image segmentation. Pattern Recogn 43:2028–2042

Rodtook A, Makhanov SS (2013) Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer. J Vis Commun Image R 24:1414–1430

Xu C, Prince JL (1998) Generalized gradient vector flow external forces for active contours. Signal Process 71(2):131–139

Vakanski T, Xian M, Freer PE (2020) Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med Biol 46:2819–2833

Byra M, Jarosik P, Szubert A, Galperin M, Ojeda-Fournier H, Olson L, O’Boyle M, Comstock C, Andre M (2020) Breast mass segmentation in ultrasound with selective kernel U-Netconvolutional neural network. Biomed Signal Process Control 61:102027

Osman FM, Yap MH (2020) Adjusted quick shift phase preserving dynamic range compression method for breast lesions segmentation. Inform Med Unlocked 20:100344

Singh VK, Abdel-Nasser M, Akram F, Rashwan HA, Sarker MMK, Pandey N, Romani S, Puig D Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. Expert Syst Appl (in press)

Chen LC, Papandreou G, Schroff F, Adam H (2017) Rethinking Atrous convolution for semantic image segmentation. arXiv preprint. arXiv:1706.05587

Rodrigues PS (2017) Breast ultrasound image. Mendeley Data. https://doi.org/10.17632/wmy84gzngw.1

Han L, Huang Y, Dou H, Wang S, Ahamad S, Luo H, Liu Q, Fan J, Zhang J (2020) Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Comput Methods Progr Biomed 189:105275

Yap MH, Goyal M, Osman F, Martí R, Denton E, Juette A, Zwiggelaar R (2020) Breast ultrasound region of interest detection and lesion localization. Artif Intell Med 107:101880

Moon WK, Lee Y, Ke H, Lee SH, Huang C, Chang R (2020) Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Progr Biomed 190:105361

Mohammed MA, Al-Khateeb B, Rashid AN, Ibrahim DA, Ghani MK, Mostaf SA (2018) Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Comput Electr Eng 70:871–882

Singh BK, Verma K, Thoke AS (2015) Adaptive gradient descent backpropagation for classification of breast tumors in ultrasound imaging. Proc Comput Sci 46:1601–1609

Ding J, Cheng HD, Xian M, Zhang Y, Xu F (2015) Local-weighted citation-kNN algorithm for breast ultrasound image classification. Optik 126:5188–5193

Abdel-Nasser M, Melendez J, Morenoa A, Omer OA, Puig D (2017) Breast tumor classification in ultrasound images using texture analysis and super-resolution methods. Eng Appl Artif Intell 59:84–92

Shi X, Cheng HD, Hu L, Ju W, Tian J (2010) Detection and classification of masses in breast ultrasound images. Digit Signal Process 20:824–836

Liu Y, Ren L, Cao X, Tong Y (2020) Breast tumors recognition based on edge feature extraction using support vector machine. Biomed Signal Process Control 58:101825

Byra M (2018) Discriminant analysis of neural style representations for breast lesion classification in ultrasound. Bio Cybern Biomed Eng 38:684–690

Jarosik P, Klimonda Z, Lewandowski M, Byra M (2020) Breast lesion classification based on ultrasonic radio-frequency signals using convolutional neural networks. Biocybern Biomed Eng 40:977–986

Singh BK, Verma K, Thoke AS (2016) Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Syst Appl 66:114–123

Zhou S, Shi J, Zhu J, Cai Y, Wang R (2013) Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image. Biomed Signal Process Control 8:688–696

Huang YL, Chen DR, Jiang YR, Kuo SJ, Wu HK, Moon W (2008) Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound. Ultrasound Obstet Gynecol 32:565–572

Xu Y, Wang Y, Yuan J, Cheng Q, Wang X, Carson PL (2019) Medical breast ultrasound image segmentation by machine learning. Ultrasonics 91:1–9

Kozegar E, Soryani M, Behnam H, Salamati M, Tan T (2017) Breast cancer detection in automated 3D breast ultrasound using iso-contours and cascaded RUSBoosts. Ultrasonics 79:68–80

Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A (2020) Dataset of breast ultrasound images. Data Brief 28:1048

Piotrzkowska-Wróblewska H, Dobruch-Sobczak K, Byra M, Nowicki A (2017) Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Med Phys 44(11):6105–6109

Prapavesis S, Fornage B, Palko A, Weismann C, Zoumpoulis P (2003) Breast ultrasound and US-guided interventional techniques: a multimedia teaching file. Thessaloniki, Greece

Jain AK, Zhong Y, Lakshmanan S (1996) Object matching using deformable templates. IEEE Trans Pattern Anal Mach Intell 18(3):267–278

Piotrzkowska-Wróblewska H, Dobruch-Sobczak K, Byra M, Nowicki A (2017) Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Med Phys 44:6105–6109

Abdel-Nasser M, Melendez J, Moreno A, Omer OA, Puig D (2017) Breast tumorclassification in ultrasound images using texture analysis and super-resolution methods. Eng Appl Artif Intell 59:84–92

Moon WK, Lo C, Cho N, Chang JM, Huang C, Chen J, Chang R (2013) Computer-aided diagnosis of breast masses using quantified BI-RADS findings. Comput Methods Progr Biomed II I:84–92