Methods for probing water at the nanoscale
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agre P, MacKinnon R (2003) Information for the public. The Nobel Prize in Chemistry 2003, © The Nobel Foundation
Agre P (2004) Aquaporin water channels (Nobel lecture). Angewandte Chemie (international edition) 43:4278–4290
Atkitt JW, Mann BE (2000) NMR and chemistry: an introduction to modern NMR spectroscopy. CRC Press, West Palm Beach
Bai JE, Wang J, Zeng XC (2006) Multiwalled ice helixes and ice nanotubes. Proc Nat Acad Sci USA 103:19664–19667
Berezhkovskii A, Hummer G (2002) Single-file transport of water molecules through a carbon nanotube. Phys Rev Lett 89:064503
Bergmann U, Wernet P, Glatzel P, Cavalleri M, Pettersson LGM, Nilsson A, Cramer SP (2002) X-ray Raman spectroscopy at the oxygen K edge of water and ice: implications on local structure models. Phys Rev B 66:092107
Chen J, Hamon MA, Hu H, Chen YS, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98
Cowan ML, Bruner BD, Huse N, Dwyer JR, Chugh B, Nibbering ETJ, Elsaesser T, Miller RJD (2005) Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434:199–202
Dellago C, Hummer G (2006) Kinetics and mechanism of proton transport across membrane nanopores. Phys Rev Lett 97:245901
Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77
Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108:11151–11159
Eijkel JCT, van den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1:249–267
Fan R, Wu YY, Li DY, Yue M, Majumdar A, Yang PD (2003) Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J Am Chem Soc 125:5254–5255
Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL (2003) Ultrafast hydrogen bond dynamics in the infrared spectroscopy of water. Science 301:1698–1702
Gale GM, Gallot G, Hache F, Lascoux N, Bratos S, Leicknam JC (1999) Femtosecond dynamics of hydrogen bonds in liquid water: a real-time study. Phys Rev Lett 82:1068–1071
Ghosh S, Ramanathan KV, Sood AK (2004) Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys Lett 65:678–684
Gordillo MC, Marti J (2000) Hydrogen bond structure of liquid water confined in nanotubes. Chem Phys Lett 329:341–345
Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liquid 101:219–260
Hanasaki I, Nakatani A (2006) Flow structure of water in carbon nanotubes: Poiseuille type or plug-like? J Chem Phys 124:144708
Hargittai I (1988). Part A: the electron diffraction technique. In: Hargittai I, Hargittai M (eds) Stereochemical applications of gas-phase electron diffraction. VCH, New York
Head-Gordon T, Hura G (2002) Water structure from scattering experiments and simulation. Chem Rev 102:2651–2669
Head-Gordon T, Johnson ME (2006) Tetrahedral structure or chains for liquid water. Proc Natl Acad Sci USA 103:16614–16614
Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65
Holt JK, Noy A, Huser T, Eaglesham D, Bakajin O (2004) Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett 4:2245–2250
Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037
Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190
Hura G, Sorenson JM, Glaeser RM, Head-Gordon T (2000) A high-quality X-ray scattering experiment on liquid water at ambient conditions. J Chem Phys 113:9140–9148
Jessel TMK, Eric R, Schwartz, James H. (2000) Principles of neural science. Ion channels, chapter 6. McGraw-Hill, New York, pp 105–124
Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 100:10175–10180
Karnicky JF, Pings CJ (1976). Recent advances in the study of liquids by X-ray diffraction. In: Prigogine I, Rice SA (eds) Advances in chemical physics. Wiley, New York
King WE, Campbell GH, Frank A, Reed B, Schmerge JF, Siwick BJ, Stuart BC, Weber PM (2005) Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys 97:1–27
Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–805
Kolesnikov AI, Zanotti JM, Loong CK, Thiyagarajan P, Moravsky AP, Loutfy RO, Burnham CJ (2004) Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys Rev Lett 93:035503
Koplik J, Banavar JR (1995) Continuum deductions from molecular hydrodynamics. Annu Rev Fluid Mech 27:257–292
Kotsalis EM, Walther JH, Koumoutsakos P (2004) Multiphase water flow inside carbon nanotubes. Int J Multiphase Flow 30:995–1010
Koumoutsakos P, Zimmerli U, Werder T, Walther JH (2004). Nanoscale fluid mechanics, In: Lakhtakia A (ed) Handbook of nanotechnology: nanometer structure theory, modeling, and simulation. ASME Press, New York
Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93:14532–14535
Leythaeuser D, Schaefer RG, Yukler A (1980) Diffusion of light hydrocarbons through near-surface rocks. Nature 284:522–525
Li JY, Gong XJ, Lu HJ, Li D, Fang HP, Zhou RH (2007) Electrostatic gating of a nanometer water channel. Proc Natl Acad Sci USA 104:3687–3692
Libera J, Gogotsi Y (2001) Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon 39:1307–1318
Ludwig R (2001) Water: from clusters to the bulk. Angewandte Chemie (international edition) 40:1808–1827
Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics —enhanced flow in carbon nanotubes. Nature 438:44
Maniwa Y, Kataura H, Abe M, Udaka A, Suzuki S, Achiba Y, Kira H, Matsuda K, Kadowaki H, Okabe Y (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401:534–538
Mann DJ, Halls MD (2003) Water alignment and proton conduction inside carbon nanotubes. Phys Rev Lett 90:195503
Mao SH, Kleinhammes A, Wu Y (2006) NMR study of water adsorption in single-walled carbon nanotubes. Chem Phys Lett 421:513–517
Matsuda K, Hibi T, Kadowaki H, Kataura H, Maniwa Y (2006) Water dynamics inside single-wall carbon nanotubes: NMR observations. Phys Rev B 74:073415
Mattia D, Rossi M, Ye H, Gogotsi Y (2007). In situ fluid studies in carbon nanotubes with diameters ranging from 1 to 500 nm. In: 5th IASME/WSEAS international conference on fluid mechanics and aerodynamics, Athens, Greece, pp. 294–296
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605
Myneni S, Luo Y, Naslund LA, Cavalleri M, Ojamae L, Ogasawara H, Pelmenschikov A, Wernet P, Vaterlein P, Heske C, Hussain Z, Pettersson LGM, Nilsson A (2002) Spectroscopic probing of local hydrogen-bonding structures in liquid water. J Phys Condens Matter 14:L213–L219
Naguib N, Ye HH, Gogotsi Y, Yazicioglu AG, Megaridis CM, Yoshimura M (2004) Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett 4:2237–2243
Narten AH, Thiessen WE, Blum L (1982) Atom pair distribution-functions of liquid water at 25-degrees-C from neutron diffraction. Science 217:1033–1034
Newville M (2004). Fundamentals of XAFS, Chicago. University of Chicago, Chicago, p. 37
Nilsson A, Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsch TK, Glatzel P, Pettersson LGM (2005) Comment on “Energetics of hydrogen bond network: rearrangements in liquid water”. Science 308:793A
Ohkubo T, Konishi T, Hattori Y, Kanoh H, Fujikawa T, Kaneko K (2002) Restricted hydration structures of Rb and Br ions confined in slit-shaped carbon nanospace. J Am Chem Soc 124:11860–11861
Page DI (1972). Chapter 9. In: Frank F (ed) Water, a comprehensive treatise. Plenum Press, New York, pp 333–362
Riegelman M, Liu H, Bau HH (2006) Controlled nanoassembly and construction of nanofluidic devices. J Fluid Eng Trans Asme 128:6–13
Ruan CY, Lobastov VA, Vigliotti F, Chen SY, Zewail AH (2004a) Ultrafast electron crystallography of interfacial water. Science 304:80–84
Ruan CY, Lobastov VA, Vigliotti F, Chen SY, Zewail AH (2004b) Unpublished work
Rullmann JAC, Vanduijnen PT (1988) A polarizable water model for calculation of hydration energies. Mol Phys 63:451–475
Sekhaneh W, Kotecha M, Dettlaff-Weglikowska U, Veeman WS (2006) High resolution NMR of water absorbed in single-wall carbon nanotubes. Chem Phys Lett 428:143–147
Shiomi J, Kimura T, Maruyama S (2007) Molecular dynamics of ice-nanotube formation inside carbon nanotubes. J Phys Chem C 111:12188–12193
Smith JD, Cappa CD, Wilson KR, Messer BM, Cohen RC, Saykally RJ (2004) Energetics of hydrogen bond network rearrangements in liquid water. Science 306:851–853
Smith JD, Cappa CD, Messer BM, Cohen RC, Saykally RJ (2005a) Response to comment on “Energetics of hydrogen bond network: rearrangements in liquid water”. Science 308:793B
Smith JD, Cappa CD, Wilson KR, Cohen RC, Geissler PL, Saykally RJ (2005b) Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc Natl Acad Sci USA 102:14171–14174
Soper AK, Bruni F, Ricci MA (1997) Site–site pair correlation functions of water from 25 to 400 degrees C: revised analysis of new and old diffraction data. J Chem Phys 106:247–254
Soper AK (2000) The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem Phys 258:121–137
Sprik M, Klein ML (1988) A polarizable model for water using distributed charge sites. J Chem Phys 89:7556–7560
Srinivasan R, Lobastov VA, Ruan CY, Zewail AH (2003) Ultrafast electron diffraction (UED)—a new development for the 4D determination of transient molecular structures. Helvetica Chimica Acta 86:1763–1838
Stallmach F, Karger J, Krause C, Jeschke M, Oberhagemann U (2000) Evidence of anisotropic self-diffusion of guest molecules in nanoporous materials of MCM-41 type. J Am Chem Soc 122:9237–9242
Stejskal EO, Tanner JE (1965) Spin diffusion measurements—spin echoes in presence of a time-dependent field gradient. J Chem Phys 42:288
Tohji K, Udagawa Y (1989) X-ray Raman-scattering as a substitute for soft-X-ray extended X-ray absorption fine structure. Phys Rev B 39:7590–7594
Waghe A, Rasaiah JC, Hummer G (2002) Filling and emptying kinetics of carbon nanotubes in water. J Chem Phys 117:10789–10795
Wallen SL, Palmer BJ, Pfund DM, Fulton JL, Newville M, Ma YJ, Stern EA (1997) Hydration of bromide ion in supercritical water: an X-ray absorption fine structure and molecular dynamics study. J Phys Chem A 101:9632–9640
Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsch TK, Ojamae L, Glatzel P, Pettersson LGM, Nilsson A (2004) The structure of the first coordination shell in liquid water. Science 304:995–999
Wu S (1991). Pulsed field gradient nuclear magnetic resonance and applications in Y type zeolites, University of Nebraska
Yang FQ (2007) Flow behavior of an Eyring fluid in a nanotube: the effect of the slip boundary condition. Appl Phys Lett 90:133105
Yazicioglu AG, Megaridis CM, Nicholls A, Gogotsi Y (2005) Electron microscope visualization of multiphase fluids contained in closed carbon nanotubes. J Vis 8:137–144
Ye H, Naguib N, Gogotsi Y (2004) TEM study of water in carbon nanotubes. JEOL News 39:38–43
Yen TH, Soong CY, Tzeng PY (2007) Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows. Microfluid Nanofluid 3:665–675
Yeremenko S, Pschenichnikov MS, Wiersma DA (2003) Hydrogen-bond dynamics in water explored by heterodyne-detected photon echo. Chem Phys Lett 369:107–113