Methods for histological characterization of cryo-induced myocardial infarction in a rat model
Tài liệu tham khảo
Anil Kumar, 2019, A visible light-cross-linkable, fibrin–gelatin-based bioprinted construct with human cardiomyocytes and fibroblasts, ACS Biomater. Sci. Eng., 5, 4551, 10.1021/acsbiomaterials.9b00505
Bouchardy, 1974, Histopathology of early myocardial infarcts: a new approach, Am. J. Pathol., 74, 301
Choo, 2019, Prognosis and predictors of mortality in patients suffering myocardial infarction with non‐obstructive coronary arteries, J. Am. Heart Assoc., 8, 10.1161/JAHA.119.011990
Christian, 1992, Determinants of infarct size in reperfusion therapy for acute myocardial infarction, Circulation, 86, 81, 10.1161/01.CIR.86.1.81
Ciulla, 2004, Left ventricular remodeling after experimental myocardial cryoinjury in rats, J. Surg. Res., 116, 91, 10.1016/j.jss.2003.08.238
Cleutjens, 1999, The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions, Cardiovasc. Res., 44, 232, 10.1016/S0008-6363(99)00212-6
Duerr, 2010, Comparison of myocardial remodeling between cryoinfarction and reperfused infarction in mice, J. Biomed. Biotechnol., 2011
Fishbein, 1978, The histopathologic evolution of myocardial infarction, Chest, 73, 843, 10.1378/chest.73.6.843
González, 2018, Myocardial interstitial fibrosis in heart failure: biological and translational perspectives, J. Am. Coll. Cardiol., 71, 1696, 10.1016/j.jacc.2018.02.021
Hasenfuss, 1998, Animal models of human cardiovascular disease, heart failure and hypertrophy, Cardiovasc. Res., 39, 60, 10.1016/S0008-6363(98)00110-2
Hawat, 2010, Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury, Pflügers Arch.-Eur. J. Physiol., 460, 583, 10.1007/s00424-010-0849-6
Kieken, 2009, Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction, Circ. Res., 104, 1103, 10.1161/CIRCRESAHA.108.190454
Klocke, 2007, Surgical animal models of heart failure related to coronary heart disease, Cardiovasc. Res., 74, 29, 10.1016/j.cardiores.2006.11.026
Papadopulos, 2007, Common tasks in microscopic and ultrastructural image analysis using ImageJ, Ultrastruct. Pathol., 31, 401, 10.1080/01913120701719189
Prabhu, 2016, The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis, Circ. Res., 119, 91, 10.1161/CIRCRESAHA.116.303577
Reichert, 2017, Murine left anterior descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction, JoVE (J. Visual. Exp.), 122
Richardson, 2011, Physiological implications of myocardial scar structure, Compr. Physiol., 5, 1877
Roy, 2009, MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue, Cardiovasc. Res., 82, 21, 10.1093/cvr/cvp015
Rusu, 2019, Biomechanical assessment of remote and postinfarction scar remodeling following myocardial infarction, Sci. Rep., 9, 1, 10.1038/s41598-019-53351-7
Sage, 2008
Saleh, 2018, Understanding myocardial infarction, F1000Research, 7, 10.12688/f1000research.15096.1
Schwarzer, 2016, 103
ThermoScientific, 2012
van den Bos, 2005, A novel model of cryoinjury-induced myocardial infarction in the mouse: a comparison with coronary artery ligation, Am. J. Physiol.-Heart Circ. Physiol., 289, 3, 10.1152/ajpheart.00111.2005
Vunjak-Novakovic, 2011, Bioengineering heart muscle: a paradigm for regenerative medicine, Annu. Rev. Biomed. Eng., 13, 245, 10.1146/annurev-bioeng-071910-124701
White, 1936, The speed of healing of myocardial infarcts, Trans. Am. Clin. Climatol. Assoc., 52, 97
Xue, 2015, Extracellular matrix reorganization during wound healing and its impact on abnormal scarring, Adv. Wound Care (New Rochelle), 4, 119, 10.1089/wound.2013.0485
Yoshida, 2001, Characterization of cardiac myocyte and tissue β-adrenergic signal transduction in rats with heart failure, Cardiovasc. Res., 50, 34, 10.1016/S0008-6363(01)00203-6