Methods and models in process safety and risk management: Past, present and future
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbasi, 2007, Dust explosions—cases, causes, consequences, and control, J. Hazard. Mater., 140, 7, 10.1016/j.jhazmat.2006.11.007
Abdolhamidzadeh, 2010, A new method for assessing domino effect in chemical process industry, J. Hazard. Mater., 182, 416, 10.1016/j.jhazmat.2010.06.049
Acikalin, 2009, Integration of safety management effectiveness into QRA calculations, Process Saf. Prog., 28, 331, 10.1002/prs.10323
Alexander, 2013, Supporting systems of systems hazard analysis using multi-agent simulation, Saf. Sci., 51, 302, 10.1016/j.ssci.2012.07.006
Alexeeff, 1994, Dose-response assessment of airborne methyl isothiocyanate (MITC) following a metam sodium spill, Risk Anal., 14, 191, 10.1111/j.1539-6924.1994.tb00044.x
Alonso, 2008, Consequence analysis to determine damage to buildings from vapour cloud explosions using characteristic curves, J. Hazard. Mater., 159, 264, 10.1016/j.jhazmat.2008.02.015
Alonso, 2008, Consequence analysis to determine the damage to humans from vapour cloud explosions using characteristic curves, J. Hazard. Mater., 150, 146, 10.1016/j.jhazmat.2007.04.089
Al-Sharrah, 2007, A new safety risk index for use in petrochemical planning, Process Saf. Environ. Prot., 85, 533, 10.1205/psep06039
Andrijievskij, 2001, LOCADIS—a model and numerical code for simulating local aerosol dispersion, J. Loss Prev. Process Ind., 14, 61, 10.1016/S0950-4230(00)00010-3
Aven, 2008, A semi-quantitative approach to risk analysis, as an alternative to QRAs, Reliab. Eng. Syst. Saf., 93, 768, 10.1016/j.ress.2007.03.025
Aven, 2005, Perspectives on risk: review and discussion of the basis for establishing a unified and holistic approach, Reliab. Eng. Syst. Saf., 90, 1, 10.1016/j.ress.2004.10.008
Aven, 2006, Barrier and operational risk analysis of hydrocarbon releases (BORA-Release). Part I. Method description, J. Hazard. Mater., 137, 681, 10.1016/j.jhazmat.2006.03.049
Bagster, 1996, The prediction of jet-fire dimensions, J. Loss Prev. Process Ind., 9, 241, 10.1016/0950-4230(96)00013-7
Bahr, 1997
Baum, 1998, Rocket missiles generated by failure of a high pressure liquid storage vessel, J. Loss Prev. Process Ind., 11, 11, 10.1016/S0950-4230(97)00035-1
Baum, 2001, The velocity of large missiles resulting from axial rupture of gas pressurised cylindrical vessels, J. Loss Prev. Process Ind., 14, 199, 10.1016/S0950-4230(00)00039-5
Baum, 1999, Failure of a horizontal pressure vessel containing a high temperature liquid: the velocity of end-cap and rocket missiles, J. Loss Prev. Process Ind., 12, 137, 10.1016/S0950-4230(98)00051-5
Baybutt, 2002, Layers of protection analysis for human factors (LOPA-HF), Process Saf. Prog., 21, 119, 10.1002/prs.680210208
Baybutt, 2003, Major hazards analysis: an improved method for process hazards analysis, Process Saf. Prog., 22, 21, 10.1002/prs.680220103
Baybutt, 2007, An improved risk graph approach for determination of safety integrity levels (SILs), Process Saf. Prog., 26, 66, 10.1002/prs.10172
Baybutt, 2012, Using risk tolerance criteria to determine safety integrity levels for safety instrumented functions, J. Loss Prev. Process Ind., 25, 1000, 10.1016/j.jlp.2012.05.016
Bedford, 2001
Belanger, 2009, Responsible care: history & development
Bensi, 2013, Efficient Bayesian network modeling of systems, Reliab. Eng. Syst. Saf., 112, 200, 10.1016/j.ress.2012.11.017
Bird, 1974
Bobbio, 2001, Improving the analysis of dependable systems by mapping fault trees into Bayesian networks, Reliab. Eng. Syst. Saf., 71, 249, 10.1016/S0951-8320(00)00077-6
Bouissou, 2003, A new formalism that combines advantages of fault-trees and Markov models: Boolean logic driven Markov processes, Reliab. Eng. Syst. Saf., 82, 149, 10.1016/S0951-8320(03)00143-1
Brissaud, 2010, Handling parameter and model uncertainties by continuous gates in fault tree analyses, J. Risk Reliab., 224, 253
Brockhoff, 1992, A consequence model for chlorine and ammonia based on a fatality index approach, J. Hazard. Mater., 29, 405, 10.1016/0304-3894(92)85044-2
Cagno, 2002, Risk analysis in plant commissioning: the Multilevel Hazop, Reliab. Eng. Syst. Saf., 77, 309, 10.1016/S0951-8320(02)00064-9
Cai, 2013, A dynamic Bayesian networks modeling of human factors on offshore blowouts, J. Loss Prev. Process Ind., 26, 639, 10.1016/j.jlp.2013.01.001
Catino, 1995, Model-based approach to automated hazards identifcation of chemical plants, Am. Inst. Chem. Eng. J., 41, 97, 10.1002/aic.690410110
CCPS, 1993
CCPS, 2000
CCPS, 2007
CCPS, 2008
Chen, 2013, Study of high-tech process furnace using inherently safer design strategies (II). Deposited film thickness model, J. Loss Prev. Process Ind., 26, 225, 10.1016/j.jlp.2012.11.004
Chen, 2013, Study of high-tech process furnace using inherently safer design strategies (I) temperature distribution model and process effect, J. Loss Prev. Process Ind., 26, 1198, 10.1016/j.jlp.2013.05.006
Chen, 2008, Safety of dynamic positioning operations on mobile offshore drilling units, Reliab. Eng. Syst. Saf., 93, 1072, 10.1016/j.ress.2007.04.003
Cherubin, 2011, Baseline risk assessment tool: a comprehensive risk management tool for process safety, Process Saf. Prog., 30, 251, 10.1002/prs.10464
Cho, 1997, Development and evaluation of an uncertainty importance measure in fault tree analysis, Reliab. Eng. Syst. Saf., 57, 143, 10.1016/S0951-8320(97)00024-0
Choi, 2007, A practical method for accurate quantification of large fault trees, Reliab. Eng. Syst. Saf., 92, 971, 10.1016/j.ress.2006.07.005
Cockshott, 2005, Probability bow–ties: a trabsparent risk management tool, Process Saf. Environ. Prot., 83, 307, 10.1205/psep.04380
Codetta-Raiteri, 2011, Integrating several formalisms in order to increase fault trees’ modeling power, Reliab. Eng. Syst. Saf., 96, 534, 10.1016/j.ress.2010.12.027
Considine, 2009, The major accident risk (MAR) process—developing the profile of major accident risk for a large multi national oil company, Process Saf. Environ. Prot., 87, 59, 10.1016/j.psep.2008.04.008
Contini, 1995, A new hybrid method for fault tree analysis, Reliab. Eng. Syst. Saf., 49, 13, 10.1016/0951-8320(95)00021-S
Coolen, 2007, Non-parametric prediction of unobserved failure modes, J. Risk Reliab., 221, 207
Coolen, 2006, On probabilistic safety assessment in the case of zero failures, J. Risk Reliab., 220, 105
Covello, 1985, Risk analysis and risk management: an historical perspective, Risk Anal., 5, 103, 10.1111/j.1539-6924.1985.tb00159.x
Cox, 2000, Assessing safety culture in offshore environments, Saf. Sci., 34, 111, 10.1016/S0925-7535(00)00009-6
Cozzani, 2004, The quantitative assessment of domino effects caused by overpressure. Part I. Probit models, J. Hazard. Mater., 107, 67, 10.1016/j.jhazmat.2003.09.013
Crowl, 2011
Cui, 2008, Layered digraph model for HAZOP analysis of chemical processes, Process Saf. Prog., 27, 293, 10.1002/prs.10266
Cui, 2010, The integration of HAZOP expert system and piping and instrumentation diagrams, Process Saf. Environ. Prot., 88, 327, 10.1016/j.psep.2010.04.002
Curcurù, 2012, Epistemic uncertainty in fault tree analysis approached by the evidence theory, J. Loss Prev. Process Ind., 25, 667, 10.1016/j.jlp.2012.02.003
Davis, 2011, Does your facility have a dust problem: methods for evaluating dust explosion hazards, J. Loss Prev. Process Ind., 24, 837, 10.1016/j.jlp.2011.06.010
Deacon, 2010, Human error risk analysis in offshore emergencies, Saf. Sci., 48, 803, 10.1016/j.ssci.2010.02.013
Delvosalle, 2006, ARAMIS project: a comprehensive methodology for the identification of reference accident scenarios in process industries, J. Hazard. Mater., 130, 200, 10.1016/j.jhazmat.2005.07.005
Demichela, 2003, On the numerical solution of fault trees, Reliab. Eng. Syst. Saf., 82, 141, 10.1016/S0951-8320(03)00142-X
Dianous, 2006, ARAMIS project: a more explicit demonstration of risk control through the use of bow–tie diagrams and the evaluation of safety barrier performance, J. Hazard. Mater., 130, 220, 10.1016/j.jhazmat.2005.07.010
Dong, 2010, Evaluation of hazard range for the natural gas jet released from a high-pressure pipeline: a computational parametric study, J. Loss Prev. Process Ind., 23, 522, 10.1016/j.jlp.2010.04.007
Dowell, 2005, Layer of protection analysis: Generating scenarios automatically from HAZOP data, Process Saf. Prog., 24, 38, 10.1002/prs.10061
Droguett, 2013, Integrated treatment of model and parameter uncertainties through a Bayesian approach, J. Risk Reliab., 227, 41
Duarte, 2001, Hazard identification using new logic diagrams and descriptors, Process Saf. Prog., 20, 157, 10.1002/prs.680200214
Duijm, 2008, Safety-barrier diagrams, J. Risk Reliab., 222, 439
Duijm, 2009, Safety-barrier diagrams as a safety management tool, Reliab. Eng. Syst. Saf., 94, 332, 10.1016/j.ress.2008.03.031
Duisault, 1983
Eleye-Datubo, 2008, Marine and offshore safety assessment by incorporative risk modeling in a fuzzy-Bayesian network of an induced mass assignment paradigm, Risk Anal., 28, 95, 10.1111/j.1539-6924.2008.01004.x
Elhdad, 2013, An ontology-based framework for process monitoring and maintenance in petroleum plant, J. Loss Prev. Process Ind., 26, 104, 10.1016/j.jlp.2012.10.001
Elke, 2013, Application of the process safety management standard in Canada
Ericson, 1999, Fault tree analysis–a history
Ericson, 2005, Event tree analysis, 223
Ferdous, 2009, Handling data uncertainties in event tree analysis, Process Saf. Environ. Prot., 87, 283, 10.1016/j.psep.2009.07.003
Ferdous, 2011, Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations, Risk Anal., 31, 86, 10.1111/j.1539-6924.2010.01475.x
Ferdous, 2012, Handling and updating uncertain information in bow–tie analysis, J. Loss Prev. Process Ind., 25, 8, 10.1016/j.jlp.2011.06.018
Ferdous, 2013, Analyzing system safety and risks under uncertainty using a bow–tie diagram: an innovative approach, Process Saf. Environ. Prot., 91, 1, 10.1016/j.psep.2011.08.010
Ferdous, 2007, Methodology for computer-aided fault tree analysis, Process Saf. Environ. Prot., 85, 70, 10.1205/psep06002
Ferdous, 2009, Methodology for computer aided fuzzy fault tree analysis, Process Saf. Environ. Prot., 7, 217L 226
Ferradás, 2008, Consequence analysis by means of characteristic curves to determine the damage to humans from bursting spherical vessels, Process Saf. Environ. Prot., 86, 121, 10.1016/j.psep.2007.10.004
Flage, 2013, Probability and possibility-based representations of uncertainty in fault tree analysis, Risk Anal., 33, 121, 10.1111/j.1539-6924.2012.01873.x
Freeman, 2008, Procedural-based controls in layer of protection analysis, Process Saf. Prog., 27, 306, 10.1002/prs.10270
Freeman, 2013, Simplified uncertainty analysis of layer of protection analysis results, Process Saf. Prog., 32, 351, 10.1002/prs.11585
Fthenakis, 2003, A simple model for predicting the release of a liquid–vapor mixture from a large break in a pressurized container, J. Loss Prev. Process Ind., 16, 61, 10.1016/S0950-4230(02)00069-4
Garrett, 2002, Automated hazard analysis of digital control systems, Reliab. Eng. Syst. Saf., 77, 1, 10.1016/S0951-8320(02)00007-8
Garvey, 1998, Risk matrix: an approach for identifying, assessing, and ranking program risks, Air Force J. Logistics, 22, 16
Gentile, 2003, Development of a fuzzy logic-based inherent safety index, Process Saf. Environ. Prot., 81, 444, 10.1205/095758203770866610
Gerrard, 2011, Failure probability under parameter uncertainty, Risk Anal., 31, 727, 10.1111/j.1539-6924.2010.01549.x
Giannissi, 2013, Numerical simulation of LNG dispersion under two-phase release conditions, J. Loss Prev. Process Ind., 26, 245, 10.1016/j.jlp.2012.11.010
Gibson, 1999, Process safety—A subject for scientific research, Trans. IChemE, 77, 153
Goossens, 1997, Applications of some risk assessment techniques: formal expert judgment and accident sequnce precursors, Saf. Sci., 26, 35, 10.1016/S0925-7535(97)00027-1
Gordon, 2005, Designing and evaluating a human factors investigation tool (HFIT) for accident analysis, Saf. Sci., 43, 147, 10.1016/j.ssci.2005.02.002
Gubinelli, 2009, Assessment of missile hazards: evaluation of the fragment number and drag factors, J. Hazard. Mater., 161, 439, 10.1016/j.jhazmat.2008.03.116
Gubinelli, 2009, Assessment of missile hazards: identification of reference fragmentation patterns, J. Hazard. Mater., 163, 1008, 10.1016/j.jhazmat.2008.07.056
Gupta, 2003, A simple graphical method for measuring inherent safety, J. Hazard. Mater., 104, 15, 10.1016/S0304-3894(03)00231-0
Haasl, 1965, Advanced concepts in fault tree analysis
Hale, 1997, Modeling of safety management systems, Saf. Sci., 26, 121, 10.1016/S0925-7535(97)00034-9
Hankin, 1999, Materials the health and safety laboratory’ s shallow layer model for heavy gas dispersion Part 1. Mathematical basis and physical assumptions, J. Hazard. Mater., 66, 211, 10.1016/S0304-3894(98)00269-6
Hankin, 1999, Hazardous materials the health and safety laboratory’ s shallow layer model for heavy gas dispersion Part 2: Outline and validation of the computational scheme, J. Hazard. Mater., 66, 227, 10.1016/S0304-3894(98)00275-1
Hankin, 1999, twodee: the Health and Safety Laboratory's shallow layer model for heavy gas dispersion Part 3: Experimental validation (Thorney Island), J. Hazard. Mater., 66, 239, 10.1016/S0304-3894(98)00270-2
Harrou, 2013, Statistical fault detection using PCA-based GLR hypothesis testing, J. Loss Prev. Process Ind., 26, 129, 10.1016/j.jlp.2012.10.003
Hassim, 2010, Inherent occupational health concept for chemical processes: a new perspective, Inst. Eng. Malaysia, 71, 56
Hauptmanns, 2001, A procedure for analyzing the flight of missiles from explosions of cylindrical vessels, J. Loss Prev. Process Ind., 14, 395, 10.1016/S0950-4230(01)00011-0
Hauptmanns, 2004, Semi-quantitative fault tree analysis for process plant safety using frequency and probability ranges, J. Loss Prev. Process Ind., 17, 339, 10.1016/j.jlp.2004.06.004
Heinrich, 1941
Hendershot, 2006, An overview of inherently safer design, Process Saf. Prog., 25, 98, 10.1002/prs.10121
Huang, 2004, Posbist fault tree analysis of coherent systems, Reliab. Eng. Syst. Saf., 84, 141, 10.1016/j.ress.2003.11.002
Hurme, 2005, Implementing inherent safety throughout process lifecycle, J. Loss Prev. Process Ind., 18, 238, 10.1016/j.jlp.2005.06.013
Hwang, 1996, A knowledge-based approach to the evaluation of fault trees, Reliab. Eng. Syst. Saf., 52, 77, 10.1016/0951-8320(95)00126-3
Iman, 1990, A methodology for grouping source terms for consequence calculations in probabilistic risk assessments, Risk Anal., 10, 507, 10.1111/j.1539-6924.1990.tb00536.x
Imanl, 1991, The repeatability of uncertainty and sensitivity analyses for complex probabilistic risk assessments, Risk Anal., 11, 591, 10.1111/j.1539-6924.1991.tb00649.x
Jalali, 2009, Determination of the optimal escape routes of underground mine networks in emergency cases, Saf. Sci., 47, 1077, 10.1016/j.ssci.2009.01.001
Jamshidi, 2013, Developing a new fuzzy inference system for pipeline risk assessment, J. Loss Prev. Process Ind., 26, 197, 10.1016/j.jlp.2012.10.010
Jo, 2009, Flame growth model for confined gas explosion, Process Saf. Prog., 28, 141, 10.1002/prs.10289
Jo, 2003, A simple model for the release rate of hazardous gas from a hole on high-pressure pipelines, J. Hazard. Mater., 97, 31, 10.1016/S0304-3894(02)00261-3
Johnson, 1980
Jung, 2004, A fast BDD algorithm for large coherent fault trees analysis, Reliab. Eng. Syst. Saf., 83, 369, 10.1016/j.ress.2003.10.009
Kadri, 2013, Method for quantitative assessment of the domino effect in industrial sites, Process Saf. Environ. Prot., 91, 452, 10.1016/j.psep.2012.10.010
Kalantarnia, 2009, Dynamic risk assessment using failure assessment and Bayesian theory, J. Loss Prev. Process Ind., 22, 600, 10.1016/j.jlp.2009.04.006
Kao, 2002, An index-based method for assessing exothermic runaway risk, Process Saf. Prog., 21, 294, 10.1002/prs.680210406
Karvonen, 1990, Knowledge-based approach to support HAZOP studies
Kasai, 2013, Accident occurrence model for the risk analysis of industrialfacilities, Reliab. Eng. Syst. Saf., 114, 71, 10.1016/j.ress.2013.01.004
Katsakiori, 2009, Towards an evaluation of accident investigation methods in terms of their alignment with accident causation models, Saf. Sci., 47, 1007, 10.1016/j.ssci.2008.11.002
Kennedy, 1998, Development of a hazard and operability-based method for identifying safety management vulnerabilities in high risk systems, Saf. Sci., 30, 249, 10.1016/S0925-7535(98)00025-3
Khakzad, 2011, Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches, Reliab. Eng. Syst. Saf., 96, 925, 10.1016/j.ress.2011.03.012
Khakzad, 2012, Dynamic risk analysis using bow–tie approach, Reliab. Eng. Syst. Saf., 104, 36, 10.1016/j.ress.2012.04.003
Khakzad, 2013, Dynamic safety analysis of process systems by mapping bow–tie into Bayesian network, Process Saf. Environ. Prot., 91
Khakzad, 2013, Quantitative risk analysis of offshore drilling operations: A Bayesian approach, Saf. Sci., 57, 108, 10.1016/j.ssci.2013.01.022
Khakzad, 2013, Risk-based design of process systems using discrete-time Bayesian networks, Reliab. Eng. Syst. Saf., 109, 5, 10.1016/j.ress.2012.07.009
Khakzad, 2013, Domino effect analysis using Bayesian networks, Risk Anal., 33, 292, 10.1111/j.1539-6924.2012.01854.x
Khalil, 2012, A cascaded fuzzy-LOPA risk assessment model applied in natural gas industry, J. Loss Prev. Process Ind., 25, 877, 10.1016/j.jlp.2012.04.010
Khan, 1997, OptHAZOP—an effective and optimum approach for HAZOP study, J. Loss Prev. Process Ind., 10, 191, 10.1016/S0950-4230(97)00002-8
Khan, 1997, TOPHAZOP: a knowledge-based software tool for conducting HAZOP in a rapid, efficient yet inexpensive manner, J. Loss Prev. Process Ind., 10, 333, 10.1016/S0950-4230(97)00023-5
Khan, 1997, Accident Hazard Index: a multi-attribute method for process industry hazard rating, Process Saf. Environ. Prot., 75, 217, 10.1205/095758297529093
Khan, 1997, Mathematical model time estimation for HAZOP study, J. Hazard. Mater., 10, 249
Khan, 1998, Techniques and methodologies for risk analysis in chemical process industries, J. Loss Prev. Process Ind., 11, 261, 10.1016/S0950-4230(97)00051-X
Khan, 1998, Multivariate hazard identification and ranking system, Process Saf. Prog., 17, 157, 10.1002/prs.680170303
Khan, 1998, DOMIFFECT (DOMIno eFFECT): user-friendly software for domino effect analysis, Environ. Modell. Softw., 13, 163, 10.1016/S1364-8152(98)00018-8
Khan, 1998, Models for domino effect analysis in chemical process industries, Process Saf. Prog., 17, 107, 10.1002/prs.680170207
Khan, 1999, Major accidents in process industries and an analysis of causes and consequences, J. Loss Prev. Process Ind., 12, 361, 10.1016/S0950-4230(98)00062-X
Khan, 1999, HAZDIG: a new software package for assessing the risks of accidental release of toxic chemicals, J. Loss Prev. Process Ind., 12, 167, 10.1016/S0950-4230(97)00043-0
Khan, 1999, PROFAT: a user friendly system for probabilistic Fault tree analysis, Process Saf. Prog., 18, 42, 10.1002/prs.680180109
Khan, 1999, TORAP—a new tool for conducting rapid risk assessment in petroleum refineries and petrochemical industries, J. Loss Prev. Process Ind., 12, 299, 10.1016/S0950-4230(98)00063-1
Khan, 1999, Modelling and control of the dispersion of hazardous heavy gases, J. Loss Prev. Process Ind., 12, 235, 10.1016/S0950-4230(98)00009-6
Khan, 2000, Towards automation of HAZOP with a new tool EXPERTOP, Environ. Modell. Softw., 15, 67, 10.1016/S1364-8152(99)00022-5
Khan, 2000, Analytical simulation and PROFAT II: A new methodology and a computer automated tool for fault tree analysis in chemical process industries, J. Hazard. Mater., 75, 1, 10.1016/S0304-3894(00)00169-2
Khan, 2001, Risk analysis of a typical chemical industry using ORA procedure, J. Loss Prev. Process Ind., 14, 43, 10.1016/S0950-4230(00)00006-1
Khan, 2002, A criterion for developing credible accident scenarios for risk assessment, J. Loss Prev. Process Ind., 15, 467, 10.1016/S0950-4230(02)00050-5
Khan, 2010, Development of risk-based process safety indicators, Process Saf. Prog., 29, 133, 10.1002/prs.10354
Khan, 2004, Integrated inherent safety index (I2SI): a tool for inherent safety evaluation, Process Saf. Prog., 23, 136, 10.1002/prs.10015
Khan, 2005, I2SI: a comprehensive quantitative tool for inherent safety and cost evaluation, J. Loss Prev. Process Ind., 18, 310, 10.1016/j.jlp.2005.06.022
Khan, 2006, HEPI: a new tool for human error probability calculation for offshore operation, Saf. Sci., 44, 313, 10.1016/j.ssci.2005.10.008
Khan, 2001, Safety weighted hazard index (SWeHI)—a new user-friendly tool for swift yet comprehensive hazard Identification and safety evaluation in chemical industry, Process Saf. Environ. Prot., 79, 65, 10.1205/09575820151095157
Khan, 2002, Design and evaluation of safety measures using a newly proposed methodology SCAP, J. Loss Prev. Process Ind., 15, 129, 10.1016/S0950-4230(01)00026-2
Khan, 2001, Rapid risk assessment of a fertilizer industry using recently developed computer-automated tool TORAP, J. Loss Prev. Process Ind., 14, 413, 10.1016/S0950-4230(00)00055-3
Khan, 2001, SCAP: a new methodology for safety management based on feedback from credible accident-probabilistic fault tree analysis system, J. Hazard. Mater., 87, 23, 10.1016/S0304-3894(01)00276-X
Kim, 2013, Key parametric analysis on designing an effective forced mitigation system for LNG spill emergency, J. Loss Prev. Process Ind., 26, 1670, 10.1016/j.jlp.2013.01.007
Kim, 2003, Automatic generation of accident scenarios in domain specific chemical plants, J. Loss Prev. Process Ind., 16, 121, 10.1016/S0950-4230(02)00111-0
Kim, 2009, Application of TRIZ creativity intensification approach to chemical process safety, J. Loss Prev. Process Ind., 22, 1039, 10.1016/j.jlp.2009.06.015
Kirchsteiger, 2002, Towards harmonising risk-informed decision making: the ARAMIS and compass projects, J. Loss Prev. Process Ind., 15, 199, 10.1016/S0950-4230(02)00005-0
Klein, 2009, Two centuries of process safety at DuPont, Process Saf. Prog., 28, 114, 10.1002/prs.10309
Kletz, 1988, Piper Alpha: latest chapter in a long history, Chem. Eng., 4, 277
Kletz, 1999, The origins and history of loss prevention, Process Saf. Environ. Prot., 77, 109L 116
Kletz, 2012, The history of process safety, J. Loss Prev. Process Ind., 25, 763, 10.1016/j.jlp.2012.03.011
Kohda, 2007, Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network, Reliab. Eng. Syst. Saf., 92, 1716, 10.1016/j.ress.2006.09.012
Kourniotis, 2000, Statistical analysis of domino chemical accidents, J. Hazard. Mater., 71, 239, 10.1016/S0304-3894(99)00081-3
Kujath, 2010, A conceptual offshore oil and gas process accident model, J. Loss Prev. Process Ind., 23, 323, 10.1016/j.jlp.2009.12.003
Kukkonen, 1992, Modelling heavy gas cloud transport in sloping terrain, J. Hazard. Mater., 31, 155, 10.1016/0304-3894(92)85003-J
Labovský, 2007, Model-based HAZOP study of a real MTBE plant, J. Loss Prev. Process Ind., 20, 230, 10.1016/j.jlp.2007.03.015
Landucci, 2008, Inherent safety key performance indicators for hydrogen storage systems, J. Hazard. Mater., 159, 554, 10.1016/j.jhazmat.2008.02.080
Laskova, 2008, Method for the systematical hazard identification, Process Saf. Prog., 27, 289, 10.1002/prs.10265
Lavasani, 2011, Fuzzy risk assessment of oil and gas offshore wells, Process Saf. Environ. Prot., 89, 277, 10.1016/j.psep.2011.06.006
Lawley, 1974, Operability studies and hazard analysis, Chem. Eng. Prog., 70, 45
Lee, 2000, Assessing safety culture in nuclear power stations, Saf. Sci., 34, 61, 10.1016/S0925-7535(00)00007-2
Leong, 2008, Inherent safety index module (ISIM) to assess inherent safety level during preliminary design stage, Process Saf. Environ. Prot., 86, 113, 10.1016/j.psep.2007.10.016
Leong, 2009, Process route index (PRI) to assess level of explosiveness for inherent safety quantification, J. Loss Prev. Process Ind., 22, 216, 10.1016/j.jlp.2008.12.008
Lehto, 1991, Models of accident causation and their application: review and reappraisal, J. Eng. Technol. Manage., 8, 173, 10.1016/0923-4748(91)90028-P
Leveson, 2004, A new accident model for engineering safer systems, Saf. Sci., 42, 237, 10.1016/S0925-7535(03)00047-X
Lewthwaite, 2006, Risk modelling of fires and explosions in open-sided offshore platform modules, J. Risk Reliab., 220, 123
Liang, 2012, A wave change analysis (WCA) method for pipeline leak detection using Gaussian mixture model, J. Loss Prev. Process Ind., 25, 60, 10.1016/j.jlp.2011.06.017
Liaw, 2000, A mathematical model for predicting thermal hazard data, J. Loss Prev. Process Ind., 13, 499, 10.1016/S0950-4230(99)00083-2
Licu, 2007, EUROCONTROL—systemic occurrence analysis methodology (SOAM)—a reason-based organisational methodology for analysing incidents and accidents, Reliab. Eng. Syst. Saf., 92, 1162, 10.1016/j.ress.2006.08.010
Limbourg, 2008, Modelling uncertainty in fault tree analyses using evidence theory, J. Risk Reliab., 222, 291
Lin, 1998, Hybrid fault tree analysis using fuzzy sets, Reliab. Eng. Syst. Saf., 58, 205, 10.1016/S0951-8320(97)00072-0
Liu, 1997, The application of Petri nets to failure analysis, Reliab. Eng. Syst. Saf., 57, 129, 10.1016/S0951-8320(97)00030-6
Liverman, 1981, The Mississauga train derailment and evacuation, Can. Geogr., 25
Macza, 2008, A Canadian perspective of the history of process safety management legislation
Marhavilas, 2011, Risk analysis and assessment methodologies in the work sites: on a review, classification and comparative study of the scientific literature of the period 2000–2009, J. Loss Prev. Process Ind., 24, 477, 10.1016/j.jlp.2011.03.004
Markowski, 2007, exLOPA for explosion risks assessment, J. Hazard. Mater., 142, 669, 10.1016/j.jhazmat.2006.06.070
Markowski, 2011, Bow–tie model in layer of protection analysis, Process Saf. Environ. Prot., 89, 205, 10.1016/j.psep.2011.04.005
Markowski, 2009, Fuzzy logic for piping risk assessment (pfLOPA), J. Loss Prev. Process Ind., 22, 921, 10.1016/j.jlp.2009.06.011
Markowski, 2009, Fuzzy logic for process safety analysis, J. Loss Prev. Process Ind., 22, 695, 10.1016/j.jlp.2008.11.011
Markowski, 2010, Uncertainty aspects in process safety analysis, J. Loss Prev. Process Ind., 23, 446, 10.1016/j.jlp.2010.02.005
Markowski, 2010, ExSys-LOPA for the chemical process industry, J. Loss Prev. Process Ind., 23, 688, 10.1016/j.jlp.2010.05.011
Maroño, 2006, The PROCESO index: a new methodology for the evaluation of operational safety in the chemical industry, Reliab. Eng. Syst. Saf., 91, 349, 10.1016/j.ress.2005.01.014
Marseguerra, 1995, Approaching system evolution in dynamic PSA by neural networks, Reliab. Eng. Syst. Saf., 49, 91, 10.1016/0951-8320(95)00039-5
Marseguerra, 2007, Human reliability analysis by fuzzy CREAM, Risk Anal., 27, 137, 10.1111/j.1539-6924.2006.00865.x
Marsh, 2012, The 100 largest losses: 1972–2011
Marsh, 2008, Generalizing event trees using Bayesian networks, J. Risk Reliab., 222, 105
Matthias, 1990, Dispersion of a dense cylindrical cloud in calm air, J. Hazard. Mater., 24, 39, 10.1016/0304-3894(90)80002-L
Matthias, 1992, Dispersion of a dense cylindrical cloud in a turbulent atmosphere, J. Hazard. Mater., 30, 117, 10.1016/0304-3894(92)85076-D
McCoy, 1999, HAZID, A computer aided for hazard identification 2. Unit model system, Process Saf. Environ. Prot., 77, 328, 10.1205/095758299530251
McCoy, 2000, HAZID, a computer aid for hazard identification: 4. Learning set, main study system, output quality, and validation trials, Process Saf. Environ. Prot., 78, 91, 10.1205/095758200530501
McCoy, 2000, HAZID, a computer aid hazard identification: 5. Future development topics and conclusions, Process Saf. Environ. Prot., 78, 120, 10.1205/095758200530510
McCoy, 1999, HAZID, A computer aid for hazard identification 1. The STOPHAZ Package and the HAZID Code: an overview, the issues and the structure, Process Saf. Environ. Prot., 77, 317, 10.1205/095758299530242
McCoy, 1999, HAZID, a computer aid for hazard identification 3. The fluid model and consequence evaluation systems, Process Saf. Environ. Prot., 77, 335, 10.1205/095758299530260
Mébarki, 2009, Structural fragments and explosions in industrial facilities. Part I: Probabilistic description of the source terms, J. Loss Prev. Process Ind., 22, 408, 10.1016/j.jlp.2009.02.006
Mébarki, 2009, Structural fragments and explosions in industrial facilities: Part II—Projectile trajectory and probability of impact, J. Loss Prev. Process Ind., 22, 417, 10.1016/j.jlp.2009.02.005
Mechri, 2013, Fuzzy multiphase Markov chains to handle uncertainties in safety systems performance assessment, J. Loss Prev. Process Ind., 26, 594, 10.1016/j.jlp.2012.12.002
Merle, 2011, Algebraic determination of the structure function of dynamic fault trees, Reliab. Eng. Syst. Saf., 96, 267, 10.1016/j.ress.2010.10.001
Mohaghegh, 2009, Incorporating organizational factors into probabilistic risk assessment of complex socio-technical systems: principles and theoretical foundations, Saf. Sci., 47, 1139, 10.1016/j.ssci.2008.12.008
Murphy, 1996, The SAM framework: modeling the effects of management factors on human behavior in risk analysis, Risk Anal., 16, 501, 10.1111/j.1539-6924.1996.tb01096.x
Murphy, 2002, Dynamic Bayesian networks
Mushtaq, 2000, A systematic Hazop procedure for batch processes, and its application to pipeless plants, J. Loss Prev. Process Ind., 13, 41, 10.1016/S0950-4230(99)00054-6
Ni, 2013, Leak location of pipelines based on transient model and PSO-SVM, J. Loss Prev. Process Ind., 26, 1085, 10.1016/j.jlp.2013.04.004
Nývlt, 2012, Dependencies in event trees analyzed by Petri nets, Reliab. Eng. Syst. Saf., 104, 45, 10.1016/j.ress.2012.03.013
Øien, 2011, Building Safety indicators: Part 1—Theoretical foundation, Saf. Sci., 49, 148, 10.1016/j.ssci.2010.05.012
Øien, 2011, Building safety indicators: Part 2—Application, practices and results, Saf. Sci., 49, 162, 10.1016/j.ssci.2010.05.015
Padova, 2011, Identification of fireproofing zones in oil&gas facilities by a risk-based procedure, J. Hazard. Mater., 191, 83. d, 10.1016/j.jhazmat.2011.04.043
Palmer, 2008, A computer tool for batch hazard and operability studies, J. Loss Prev. Process Ind., 21, 537, 10.1016/j.jlp.2008.05.001
Palmer, 2009, An automated system for batch hazard and operability studies, Reliab. Eng. Syst. Saf., 94, 1095, 10.1016/j.ress.2009.01.001
Paltrinieri, 2013, Dynamic procedure for atypical scenarios identification (DyPASI): a new systematic HAZID tool, J. Loss Prev. Process Ind., 26, 683, 10.1016/j.jlp.2013.01.006
Pasman, 2013, Bayesian networks make LOPA more effective, QRA more transparent and flexible, and thus safety more definable!, J. Loss Prev. Process Ind., 26, 434, 10.1016/j.jlp.2012.07.016
Pattison, 1998, Modeling of dispersion of two-phase releases: Part 2—Numarical solution scheme and validation, Process Saf. Environ. Prot., 76, 41, 10.1205/095758298529245
Pattison, 1998, Modeling of dispersion of two-phase releases: Part 1—Conservation equations and closure relationships, Process Saf. Environ. Prot., 76, 31, 10.1205/095758298529236
Pedroni, 2013, Uncertainty analysis in fault tree models with dependent basic events, Risk Anal., 33, 1146, 10.1111/j.1539-6924.2012.01903.x
Peng-cheng, 2012, A fuzzy Bayesian network approach to improve the quantification of organizational influences in HRA frameworks, Saf. Sci., 50, 1569, 10.1016/j.ssci.2012.03.017
Planas, 2014, Historical evolution of process safety and major-accident hazards prevention in Spain. Contribution of the pioneer Joaquim Casal, J. Loss Prev. Process Ind., 28, 109, 10.1016/j.jlp.2013.04.005
Planas-Cuchi, 2004, Calculating overpressure from BLEVE explosions, J. Loss Prev. Process Ind., 17, 431, 10.1016/j.jlp.2004.08.002
Price, 1992, Determination of less-than-lifetime exposures to point source emissions, Risk Anal., 12, 367, 10.1111/j.1539-6924.1992.tb00689.x
Pula, 2006, A grid based approach for fire and explosion consequence analysis, Process Saf. Environ. Prot., 84, 79, 10.1205/psep.05063
Pula, 2007, A model for estimating the probability of missile impact: missiles originating from bursting horizontal cylindrical vessels, Process Saf. Prog., 26, 129, 10.1002/prs.10178
Quigley, 2011, Estimating the probability of rare events: addressing zero failure data, Risk Anal., 31, 1120, 10.1111/j.1539-6924.2010.01568.x
Quintana, 2001, Application of a predictive safety model in a combustion testing environment, Saf. Sci., 38, 183, 10.1016/S0925-7535(00)00067-9
Rahman, 2005, Comparison of inherent safety indices in process concept evaluation, J. Loss Prev. Process Ind., 18, 327, 10.1016/j.jlp.2005.06.015
Rahman, 2009, ExpHAZOP+: knowledge-based expert system to conduct automated HAZOP analysis, J. Loss Prev. Process Ind., 22, 373, 10.1016/j.jlp.2009.01.008
Rai, 1998, Uncertainty and variability analysis in multiplicative risk models, Risk Anal., 18, 37, 10.1111/j.1539-6924.1998.tb00914.x
Ramzan, 2007, Methodology for the generation and evaluation of safety system alternatives based on extended Hazop, Process Saf. Prog., 26, 35, 10.1002/prs.10161
Durga Rao, 2009, Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment, Reliab. Eng. Syst. Saf., 94, 872, 10.1016/j.ress.2008.09.007
Rasmussen, 1997, Accident and risk control, J. Loss Prev. Process Ind., 10, 325, 10.1016/S0950-4230(97)00022-3
Rathnayaka, 2013, Accident modeling and risk assessment framework for safety critical decision-making: application to deepwater drilling operation, J. Risk Reliab., 227, 86
Rathnayaka, 2011, SHIPP methodology: predictive accident modeling approach. Part I: Methodology and model description, Process Saf. Environ. Prot., 89, 151, 10.1016/j.psep.2011.01.002
Rathnayaka, 2011, SHIPP methodology: predictive accident modeling approach. Part II. Validation with case study, Process Saf. Environ. Prot., 89, 75, 10.1016/j.psep.2010.12.002
Rathnayaka, 2012, Accident modeling approach for safety assessment in an LNG processing facility, J. Loss Prev. Process Ind., 25, 414, 10.1016/j.jlp.2011.09.006
Rauzy, 1993, New algorithms for faulttree analysis, Reliab. Eng. Syst. Saf., 40, 203, 10.1016/0951-8320(93)90060-C
Reason, 1990
Reay, 2002, A fault tree analysis strategy using binary decision diagrams, Reliab. Eng. Syst. Saf., 78, 45, 10.1016/S0951-8320(02)00107-2
Remenyte, 2006, Qualitative analysis of complex modularized fault trees using binary decision diagrams, J. Risk Reliab., 220, 45
Remenyte, 2008, Analysis of non-coherent fault trees using ternary decision diagrams, J. Risk Reliab., 222, 127
Reniers, 2009, An optimizing hazard/risk analysis review planning (HARP) framework for complex chemical plants, J. Loss Prev. Process Ind., 22, 133, 10.1016/j.jlp.2008.10.005
Rew, 1997, Modeling of thermal radiation from external hydrocarbon pool fires, Process Saf. Environ. Prot., 75, 81, 10.1205/095758297528841
Røed, 2009, On the use of the hybrid causal logic method in offshore risk analysis, Reliab. Eng. Syst. Saf., 94, 445, 10.1016/j.ress.2008.04.003
Rosenberg, 1996, Algorithm for finding minimal cut sets in a fault tree, Reliab. Eng. Syst. Saf., 53, 67, 10.1016/0951-8320(96)00034-8
Roser, 1999, Investigations of flame front propagation between interconnected process vessels. Development of a new flame front propagation time prediction model, J. Loss Prev. Process Ind., 12, 421, 10.1016/S0950-4230(99)00013-3
Rosness, 1998, Risk influence analysis: a methodology for identification and assessment of risk reduction stratergies, Reliab. Eng. Syst. Saf., 60, 60, 10.1016/S0951-8320(98)83008-1
Rouhiainen, 1992, QUASA: a method for assessing the quality of safety analysis, Saf. Sci., 15, 155, 10.1016/0925-7535(92)90002-H
Rushton, 2008, Total risk of death—towards a common and usable basis for consequence assessment, Process Saf. Environ. Prot., 7, 21
Rusli, 2010, Qualitative assessment for inherently safer design (QAISD) at preliminary design stage, J. Loss Prev. Process Ind., 23, 157, 10.1016/j.jlp.2009.07.005
Rusli, 2013, Evaluating hazard conflicts using inherently safer design concept, Saf. Sci., 53, 61, 10.1016/j.ssci.2012.09.002
Salvi, 2006, A global view on ARAMIS, a risk assessment methodology for industries in the framework of the SEVESO II directive, J. Hazard. Mater., 130, 187, 10.1016/j.jhazmat.2005.07.034
Santos-Reyes, 2008, A systemic approach to managing safety, J. Loss Prev. Process Ind., 21, 15, 10.1016/j.jlp.2007.06.009
Santos-Reyes, 2009, A SSMS model with application to the oil and gas industry, J. Loss Prev. Process Ind., 22, 958, 10.1016/j.jlp.2008.07.009
Scarrott, 2010, Extreme-value-model-based risk assessment for nuclear reactors, J. Risk Reliab., 224, 239
Schubach, 1997, A modified computer hazard and operability study procedure, J. Loss Prev. Process Ind., 10, 303, 10.1016/S0950-4230(97)00011-9
Scobel, 1998, Application of the risk oriented accident analysis methodology (ROAAM) to severe accident management in the AP600 advanced light water reactor, Reliab. Eng. Syst. Saf., 62, 51, 10.1016/S0951-8320(97)00170-1
Shafaghi, 2008, Equipment failure rate updating-Bayesian estimation, J. Hazard. Mater., 159, 87, 10.1016/j.jhazmat.2008.01.042
Shah, 2003, A hierarchical approach for the evaluation of chemical process aspects from the perspective of inherent safety, Process Saf. Environ. Prot., 81, 430, 10.1205/095758203770866601
Shah, 2005, Assessment of chemical process hazards in early design stages, J. Loss Prev. Process Ind., 18, 335, 10.1016/j.jlp.2005.06.016
Shalev, 2007, Condition-based fault tree analysis (CBFTA): a new method for improved fault tree analysis (FTA), reliability and safety calculations, Reliab. Eng. Syst. Saf., 92, 1231, 10.1016/j.ress.2006.05.015
Shariff, 2009, Inherent risk assessment—a new concept to evaluate risk in preliminary design stage, Process Saf. Environ. Prot., 87, 371, 10.1016/j.psep.2009.08.004
Shariff, 2010, Toxic release consequence analysis tool (TORCAT) for inherently safer design plant, J. Hazard. Mater., 182, 394, 10.1016/j.jhazmat.2010.06.046
Shariff, 2013, Inherent risk assessment methodology in preliminary design stage: a case study for toxic release, J. Loss Prev. Process Ind., 26, 605, 10.1016/j.jlp.2012.12.003
Shariff, 2006, Inherent safety tool for explosion consequences study, J. Loss Prev. Process Ind., 19, 409, 10.1016/j.jlp.2005.10.008
Si, 2012, Quantitative risk assessment model of hazardous chemicals leakage and application, Saf. Sci., 50, 1452, 10.1016/j.ssci.2012.01.011
Singh, 1991, Estimation of vulnerable zones due to accidental release of toxic materials resulting in dense gas clouds, Risk Anal., 11, 425, 10.1111/j.1539-6924.1991.tb00629.x
Sinnamon, 1997, New approaches to evaluating fault trees, Reliab. Eng. Syst. Saf., 8, 89, 10.1016/S0951-8320(96)00036-1
Sklet, 2006, Hydrocarbon releases on oil and gas production platforms: release scenarios and safety barriers, J. Loss Prev. Process Ind., 19, 481, 10.1016/j.jlp.2005.12.003
Sklet, 2006, Barrier and operational risk analysis of hydrocarbon releases (BORA-Release). Part II: Results from a case study, J. Hazard. Mater., 137, 692, 10.1016/j.jhazmat.2006.03.027
Srinivasan, 2012, Developments in inherent safety: a review of the progress during 2001–2011 and opportunities ahead, Process Saf. Environ. Prot., 90, 389, 10.1016/j.psep.2012.06.001
Srinivasan, 2008, A statistical approach for evaluating inherent benign-ness of chemical process routes in early design stages, Process Saf. Environ. Prot., 86, 163, 10.1016/j.psep.2007.10.011
Stanton, 1996, A systems approach to human error identification, Saf. Sci., 22, 215, 10.1016/0925-7535(96)00016-1
Suardin, 2007, The integration of Dow's fire and explosion index (F&EI) into process design and optimization to achieve inherently safer design, J. Loss Prev. Process Ind., 20, 79, 10.1016/j.jlp.2006.10.006
Summers, 2003, Introduction to layers of protection analysis, J. Hazard. Mater., 104, 163, 10.1016/S0304-3894(03)00242-5
Sun, 2013, LNG accident dynamic simulation: application for hazardous consequence reduction, J. Loss Prev. Process Ind., 26, 1246, 10.1016/j.jlp.2013.06.005
Sun, 2012, Parametric approach of the domino effect for structural fragments, J. Loss Prev. Process Ind., 25, 114, 10.1016/j.jlp.2011.06.029
Svedung, 2002, Graphic representation of accident scenarios: mapping system structure and the causation of accidents, Saf. Sci., 40, 397, 10.1016/S0925-7535(00)00036-9
Svenson, 1991, The accident evolution and barrier function (AEB) model applied to incident analysis in the processing industries, Risk Anal., 11, 499, 10.1111/j.1539-6924.1991.tb00635.x
Swaminathan, 1999, The event sequence diagram framework for dynamic probabilistic risk assessment, Reliab. Eng. Syst. Saf., 63, 73, 10.1016/S0951-8320(98)00027-1
Swaminathan, 1999, The mathematical formulation for the event sequence diagram framework, Reliab. Eng. Syst. Saf., 65, 103, 10.1016/S0951-8320(98)00092-1
Tauseef, 2011, Development of a new chemical process-industry accident database to assist in past accident analysis, J. Loss Prev. Process Ind., 24, 426, 10.1016/j.jlp.2011.03.005
Theis, 2013, Inherently safer design concepts applied to laboratories, Process Saf. Prog., 32, 142, 10.1002/prs.11590
Theofanous, 1996, On the proper formulation of safety goals and assessment of safety margins for rare and high-consequence hazards, Reliab. Eng. Syst. Saf., 54, 243, 10.1016/S0951-8320(96)00079-8
Tommasini, 2013, The classification of hazardous areas where explosive gas atmospheres may be present, Saf. Sci., 58, 53, 10.1016/j.ssci.2013.03.010
Tramell, 2001
Triplett, 2004, Application of chain of events analysis to process safety management, Process Saf. Prog., 23, 132, 10.1002/prs.10026
Tugnoli, 2008, Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 1—Guideword applicability and method description, J. Hazard. Mater., 160, 100, 10.1016/j.jhazmat.2008.02.089
Tugnoli, 2008, Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 2-Domino Hazard Index and case study, J. Hazard. Mater., 160, 110, 10.1016/j.jhazmat.2008.02.091
Tugnoli, 2012, Supporting the selection of process and plant design options by Inherent Safety KPIs, J. Loss Prev. Process Ind., 25, 830, 10.1016/j.jlp.2012.03.008
Tulsiani, 1990, Distribution analyzer and risk evaluator (DARE) using fault trees, Risk Anal., 10, 521, 10.1111/j.1539-6924.1990.tb00537.x
Vaidhyanathan, 1995, Digraph-based models for automated HAZOP analysis, Reliab. Eng. Syst. Saf., 50, 33, 10.1016/0951-8320(95)00052-4
Vaidhyanathan, 1996, A semi-quantitative reasoning methodology for filtering and ranking HAZOP results in HAZOPExpert, Reliab. Eng. Syst. Saf., 53, 185, 10.1016/0951-8320(96)00061-0
Vandroux-Koenig, 1997, Modelling of a two phase momentum jet close to the breach, in the containment vessel of a liquefied gas, J. Loss Prev. Process Ind., 10, 17, 10.1016/S0950-4230(96)00038-1
Vatn, 1992, Finding minimal cut sets in a fault tree, Reliab. Eng. Syst. Saf., 36, 59, 10.1016/0951-8320(92)90152-B
Venetsanos, 2003, DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features, J. Hazard. Mater., 99, 111, 10.1016/S0304-3894(03)00011-6
Venkatasubramanian, 1994, A knowldge-based framework for automating HAZOP analysis, Am. Inst. Chem. Eng. J., 40, 496, 10.1002/aic.690400311
Verlicchi, 2000, Accidental releases of two-phase multicomponent critical flow from horizontal pipes, Process Saf. Prog., 19, 191, 10.1002/prs.680190404
Vesely, 1981
Vílchez, 2011, Generic event trees and probabilities for the release of different types of hazardous materials, J. Loss Prev. Process Ind., 24, 281, 10.1016/j.jlp.2011.01.005
Vinnem, 2006, Major hazard risk indicators for monitoring of trends in the Norwegian offshore petroleum sector, Reliab. Eng. Syst. Saf., 91, 778, 10.1016/j.ress.2005.07.004
Vinnem, 2009, Generalized methodology for operational risk analysis of offshore installations, J. Risk Reliab., 223, 87
Wang, 2012, A novel knowledge database construction method for operation guidance expert system based on HAZOP analysis and accident analysis, J. Loss Prev. Process Ind., 25, 905, 10.1016/j.jlp.2012.05.001
Wang, 2012, A new intelligent assistant system for HAZOP analysis of complex process plant, J. Loss Prev. Process Ind., 25, 636, 10.1016/j.jlp.2012.02.001
Wang, 2009, SDG-based HAZOP analysis of operating mistakes for PVC process, Process Saf. Environ. Prot., 87, 40, 10.1016/j.psep.2008.06.004
Wang, 2013, Accident analysis model based on Bayesian network and evidential reasoning approach, J. Loss Prev. Process Ind., 26, 10, 10.1016/j.jlp.2012.08.001
Wang, 2011, Quantitative risk assessment through hybrid causal logic approach, J. Risk Reliab., 225, 323
WASH-1400, 1975
Way, 2000, A simple component-connection method for building binary decision diagrams encoding a fault tree, Reliab. Eng. Syst. Saf., 70, 59, 10.1016/S0951-8320(00)00048-X
Webber, 1993, A model of the motion of a heavy gas cloud released on a uniform slope, J. Hazard. Mater., 33, 101, 10.1016/0304-3894(93)85066-N
Wei, 2008, Layer of protection analysis for reactive chemical risk assessment, J. Hazard. Mater., 159, 19, 10.1016/j.jhazmat.2008.06.105
Wu, 2013, Domain ontology for scenario-based hazard evaluation, Saf. Sci., 60, 21, 10.1016/j.ssci.2013.06.003
Wu, 2013, A novel failure mode analysis model for gathering system based on multilevel flow modeling and HAZOP, Proc. Saf. Environ. Prot., 91, 54, 10.1016/j.psep.2012.02.002
Xu, 2013, Acoustic detection technology for gas pipeline leakage, Proc. Saf. Environ. Prot., 91, 253, 10.1016/j.psep.2012.05.012
Xue, 2013, A safety barrier-based accident model for offshore drilling blowouts, J. Loss Prev. Process Ind., 26, 164, 10.1016/j.jlp.2012.10.008
Yang, 1996, Technical note failure probability evaluation for normally distributed load–strength model with unknown parameters, Reliab. Eng. Syst. Saf., 51, 115, 10.1016/0951-8320(95)00103-4
Yang, 2010, Uncertainty reduction for improved mishap probability prediction: application to level control of distillation unit, J. Loss Prev. Process Ind., 23, 149, 10.1016/j.jlp.2009.07.006
You, 2012, Event-tree analysis with imprecise probabilities, Risk Anal., 32, 330, 10.1111/j.1539-6924.2011.01721.x
Youngblood, 1998, Applying risk models to formulation of safety cases, Risk Anal., 18, 433, 10.1111/j.1539-6924.1998.tb00358.x
Yu, 2012, Context-specific, scenario-based risk scales, Risk Anal., 32, 2166, 10.1111/j.1539-6924.2012.01837.x
Yuge, 2008, Quantitative analysis of a fault tree with priority AND gates, Reliab. Eng. Syst. Saf., 93, 1577, 10.1016/j.ress.2008.02.016
Yuhua, 2005, Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis, J. Loss Prev. Process Ind., 18, 83, 10.1016/j.jlp.2004.12.003
Yuhua, 2002, Evaluation of gas release rate through holes in pipelines, J. Loss Prev. Process Ind., 15, 423, 10.1016/S0950-4230(02)00041-4
Yun, 2009, Risk assessment of LNG importation terminals using the Bayesian–LOPA methodology, J. Loss Prev. Process Ind., 22, 91, 10.1016/j.jlp.2008.10.001
Zadakbar, 2013, Dynamic risk assessment and fault detection using a multivariate technique, Proc. Saf. Prog., 32, 365, 10.1002/prs.11609
Zhang, 2009, The analysis of domino effect impact probability triggered by fragments, Saf. Sci., 47, 1026, 10.1016/j.ssci.2008.11.005
Zhao, 2005, PHASuite: an automated HAZOP analysis tool for chemical processes, Proc. Saf. Environ. Prot., 83, 509, 10.1205/psep.04055
Zhao, 2005, PHASuite: an automated HAZOP analysis tool for chemical processes, Proc. Saf. Environ. Prot., 83, 533, 10.1205/psep.04056