Methodology for the Characterisation of Linear Rail Transport Infrastructures with the Machine Learning Technique and Their Application in a Hyperloop Network
Tóm tắt
Từ khóa
Tài liệu tham khảo
Musk, E (2013) Hyperloop Alpha. SpaceX
AASHTO (2001) A policy on geometric desing of highways and streets. pp. ix (Preface)
LópezArchila MC, EcheverryArciniegas CA (1999) Manual de DiseñoGeométrico para Carreteras. Ciencia e IngenieríaNeogranadina 8(145–156):155
National Association of Australian State Road Authorities (1972) Guide Policy for Geometric Design o Freeways and Expressways
The Indian Road Congress (1973) Recommendations about the Alignment Survey and Geometric Design of Hill Roads
Secretaria de Comunicaciones y Transportes, Dirección General de Servicios Técnicos de los Estados Unidos Mexicanos (1976) Manual de Proyecto Geométrico de Carreteras
Actisa Development Team (2014) Tadil software. Spain
Zhu Y, Chen F, Wang Z (2019) Spatio-temporal analysis of rail station ridership determinants in the built environment. Transportation 46:2269–2289
Sysyn M, Gerber U, Nabochenko O (2019) Prediction of rail contact fatigue on crossings using image processing and machine learning methods. Urban Rail Transit 5:123–132
Ghasedi M, Sarfjoo M, Bargegol I (2021) Prediction and analysis of the severity and number of suburban accidents using logit model, factor analysis and machine learning: a case study in a developing country. SN Appl. Sci. 3:13
Yan X, Radwan E, Abdel-Aty M (2005) Characteristics of rear-end accidents at signalized intersections using multiple logistic regression model. Accid Anal Prev 37(6):983–995
Ochmanski M, Modoni G, Bzowka J (2015) Prediction of the diameter of jet grouting columns with artificial neural networks. Soils Found 55(2):425–436
Hadj-Mabrouk H (2019) Contribution of artificial intelligence to risk assessment of railway accidents. Urban Rail Transit 5:104–122
Faghih-Roohi S, Hajizadeh S, Núñez A, Babuska R, De Schutter B (2016) Deep convolutional neural networks for detection of rail surface defects. In: International joint conference on neural networks (IJCNN), Vancouver, BC, 2016, pp 2584–2589
You J, Wang J, Guo J (2017) Real-time crash prediction on freeways using data mining and emerging techniques. J Mod Transport 25:116–123
Shamshirband S, Rabczuk T, Chau K (2019) A survey of deep learning techniques: application in wind and solar energy resources
Santur Y, Karaköse M, Akin E (2017) A new rail inspection method based on deep learning using laser cameras. In: International artificial intelligence and data processing symposium (IDAP), Malatya, pp 1–6 (2017)
TayefehHashemi S, Ebadati OM, Kaur H (2020) Cost estimation and prediction in construction projects: a systematic review on machine learning techniques. SN Appl Sci 2:1703
Amin M (2017) Development of cost estimation model for residential building. Int J CivStructEng Res 5(1):1–4
Jiang Q (2019) Estimation of construction project building cost by back-propagation neural network. J Eng Des Technol 18(3):601–609
BigML (2011) BigML, Inc. Corvallis, Oregon, USA
Berthold M (2006) KNIME (Konstanz Information Miner). Universität Konstanz
Actisa SL (2020) High speed railway line from Santiago de Chile to Valparaiso and Viña del Mar. Northern Corridor or Southern Corridor?
Centro Nacional de Información Geográfica, file: RT-ESPANA-PORMODOS.ZIP. 15 November 2018
QGIS Development Team (2002) QGIS Noosa. Windows—GNU/Linux—Mac OS X—BSD—Android. USA: Open Source Geospatial Foundation
Schneider A (2002) GPS visualizer. USA: GPS Visualizer