Methodological challenges of genome-wide association analysis in Africa

Nature Reviews Genetics - Tập 11 Số 2 - Trang 149-160 - 2010
Yik‐Ying Teo1, Kerrin S. Small2,3, Dominic Kwiatkowski2,3
1Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
2Wellcome Trust Centre for Human Genetics, Oxford, UK
3Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 1590–1605 (2008).

McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet. 9, 356–369 (2008).

Donnelly, P. Progress and challenges in genome-wide association studies in humans. Nature 456, 728–731 (2008).

Black, R. E., Morris, S. S. & Bryce, J. Where and why are 10 million children dying every year? Lancet 361, 2226–2234 (2003).

Mathers, C. D., Boerma, T. & Ma Fat, D. Global and regional causes of death. Br. Med. Bull. 92, 7–32 (2009).

Mayosi, B. M. et al. The burden of non-communicable diseases in South Africa. Lancet 374, 934–947 (2009).

Tishkoff, S. A. & Williams, S. M. Genetic analysis of African populations: human evolution and complex disease. Nature Rev. Genet. 3, 611–621 (2002).

Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genomics Hum. Genet. 9, 403–433 (2008). This paper provides a comprehensive discussion on the implications of genetic diversity in Africa for complex disease mapping and understanding the origins of modern humans.

Sirugo, G. et al. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Hum. Genet. 123, 557–598 (2008).

Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044 (2009). The most detailed genetic survey of Africans and African-Americans to date.

Conrad, D. F. et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nature Genet. 38, 1251–1260 (2006). This article reports the extent of haplotype diversity in humans and the applicability of genome-wide studies across many populations.

Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998–1003 (2008). This paper provides a detailed exposition of genetic variation across the populations of the Human Genome Diversity Project.

DeGiorgio, M., Jakobsson, M. & Rosenberg, N. A. Out of Africa: modern human origins special feature: explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc. Natl Acad. Sci. USA 106, 16057–16062 (2009).

Todd, J. A. et al. Identification of susceptibility loci for insulin-dependent diabetes mellitus by trans-racial gene mapping. Nature 338, 587–589 (1989). An insightful study from 20 years ago that illustrates the problem of identifying causal genetic variants and the value of examining African haplotypes.

International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

Helgason, A. et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nature Genet. 39, 218–225 (2007).

Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

Clark, A. G. Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Curr. Opin. Genet. Dev. 13, 296–302 (2003).

Jallow, M. et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nature Genet. 41, 657–665 (2009). The first report of a genome-wide study performed in Africa, describing population structure and imputation from population-specific sequencing data.

Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

Crawford, D. C. et al. Haplotype diversity across 100 candidate genes for inflammation, lipid metabolism, and blood pressure regulation in two populations. Am. J. Hum. Genet. 74, 610–622 (2004).

Bhangale, T. R., Rieder, M. J. & Nickerson, D. A. Estimating coverage and power for genetic association studies using near-complete variation data. Nature Genet. 40, 841–843 (2008). A well-conducted resequencing study that highlights the level of ascertainment bias in existing databases for African populations in particular.

Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008). The first whole-genome sequence of an individual of African ancestry.

Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

Hirschhorn, J. N. Genomewide association studies — illuminating biologic pathways. N. Engl. J. Med. 360, 1699–1701 (2009).

Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nature Genet. 39, 724–726 (2007).

Wardle, J., Llewellyn, C., Sanderson, S. & Plomin, R. The FTO gene and measured food intake in children. Int. J. Obes. (Lond.) 33, 42–45 (2009).

Tanofsky-Kraff, M. et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am. J. Clin. Nutr. 90, 1483–1488 (2009).

Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–190 (2005).

Hill, A. V. Aspects of genetic susceptibility to human infectious diseases. Annu. Rev. Genet. 40, 469–486 (2006).

Fellay, J. et al. A whole-genome association study of major determinants for host control of HIV-1. Science 317, 944–947 (2007).

Goldstein, D. B. Genomics and biology come together to fight HIV. PLoS Biol. 6, e76 (2008).

Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976).

Moreno, A. et al. Preclinical assessment of the receptor-binding domain of Plasmodium vivax Duffy-binding protein as a vaccine candidate in rhesus macaques. Vaccine 26, 4338–4344 (2008).

Mackinnon, M. J., Mwangi, T. W., Snow, R. W., Marsh, K. & Williams, T. N. Heritability of malaria in Africa. PLoS Med. 2, e340 (2005).

Malaria Genomic Epidemiology Network. A global network for investigating the genomic epidemiology of malaria. Nature 456, 732–737 (2008).

Daar, A. S. et al. Grand challenges in chronic non-communicable diseases. Nature 450, 494–496 (2007).

World Health Organization. Preventing Chronic Diseases: A Vital Investment (World Health Organization, Geneva, 2005).

Cooper, R. S., Rotimi, C. N. & Ward, R. The puzzle of hypertension in African-Americans. Sci. Am. 280, 56–63 (1999).

Smith, M. W. & O'Brien, S. J. Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nature Rev. Genet. 6, 623–632 (2005).

Cooper, R. et al. The prevalence of hypertension in seven populations of West African origin. Am. J. Public Health 87, 160–168 (1997).

Cooper, R. S. et al. Prevalence of NIDDM among populations of the African diaspora. Diabetes Care 20, 343–348 (1997).

Smith, M. W. et al. A high-density admixture map for disease gene discovery in African Americans. Am. J. Hum. Genet. 74, 1001–1013 (2004).

McKeigue, P. M. Prospects for admixture mapping of complex traits. Am. J. Hum. Genet. 76, 1–7 (2005).

Zhu, X. et al. Admixture mapping for hypertension loci with genome-scan markers. Nature Genet. 37, 177–181 (2005).

Patterson, N. et al. Genetic structure of a unique admixed population: implications for medical research. Hum. Mol. Genet. 18 Nov 2009 (doi:10.1093/hmg/ddp505).

Price, A. L. et al. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet. 5, e1000519 (2009).

Cheng, C. Y. et al. Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X. PLoS Genet. 5, e1000490 (2009).

Reich, D. et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 5, e1000360 (2009). A detailed investigation that used admixture mapping to identify a genomic region of interest for a common phenotype and then used association fine mapping to find a plausible causal variant.

Kaufman, J. S., Owoaje, E. E., Rotimi, C. N. & Cooper, R. S. Blood pressure change in Africa: case study from Nigeria. Hum. Biol. 71, 641–657 (1999).

Adeyemo, A. et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 5, e1000564 (2009). An important GWA study in African-Americans with replication studies in West Africa. This work sets the scene for African GWA studies of hypertension and other chronic diseases.

Rotimi, C. N. et al. A genome-wide search for type 2 diabetes susceptibility genes in West Africans: the Africa America Diabetes Mellitus (AADM) study. Diabetes 53, 838–841 (2004).

Rotimi, C. N. et al. In search of susceptibility genes for type 2 diabetes in West Africa: the design and results of the first phase of the AADM study. Ann. Epidemiol. 11, 51–58 (2001).

Rotimi, C. et al. Prevalence and determinants of diabetic retinopathy and cataracts in West African type 2 diabetes patients. Ethn. Dis. 13, S110–S117 (2003).

Steinthorsdottir, V. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genet. 39, 770–775 (2007).

Wang, W. Y., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nature Rev. Genet. 6, 109–118 (2005).

Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

Chanock, S. J. et al. Replicating genotype–phenotype associations. Nature 447, 655–660 (2007).

Dudbridge, F. & Gusnanto, A. Estimation of significance thresholds for genomewide association scans. Genet. Epidemiol. 32, 227–234 (2008).

Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M. J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

Hoggart, C. J., Clark, T. G., De Iorio, M., Whittaker, J. C. & Balding, D. J. Genome-wide significance for dense SNP and resequencing data. Genet. Epidemiol. 32, 179–185 (2008).

Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genet. 40, 638–645 (2008).

Teo, Y. Y. et al. Genome-wide comparisons of variation in linkage disequilibrium. Genome Res. 19, 1849–1860 (2009). Provides a quantitative metric for assessing the extent of variation in patterns of LD between two populations.

Teo, Y. Y. et al. Power consequences of linkage disequilibrium variation between populations. Genet. Epidemiol. 33, 128–135 (2008).

Lowe, C. E. et al. Large-scale genetic fine mapping and genotype–phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nature Genet. 39, 1074–1082 (2007).

McKenzie, C. A. et al. Trans-ethnic fine mapping of a quantitative trait locus for circulating angiotensin I-converting enzyme (ACE). Hum. Mol. Genet. 10, 1077–1084 (2001).

Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nature Genet. 40, 198–203 (2008).

de Bakker, P. I. et al. Efficiency and power in genetic association studies. Nature Genet. 37, 1217–1223 (2005).

Barrett, J. C. & Cardon, L. R. Evaluating coverage of genome-wide association studies. Nature Genet. 38, 659–662 (2006).

Pe'er, I. et al. Evaluating and improving power in whole-genome association studies using fixed marker sets. Nature Genet. 38, 663–667 (2006).

Clark, A. G., Hubisz, M. J., Bustamante, C. D., Williamson, S. H. & Nielsen, R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 15, 1496–1502 (2005).

Miller, R. D. et al. High-density single-nucleotide polymorphism maps of the human genome. Genomics 86, 117–126 (2005).

Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

Wall, J. D. et al. A novel DNA sequence database for analyzing human demographic history. Genome Res. 18, 1354–1361 (2008).

Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008).

Conrad, D. F., Andrews, T. D., Carter, N. P., Hurles, M. E. & Pritchard, J. K. A high-resolution survey of deletion polymorphism in the human genome. Nature Genet. 38, 75–81 (2006).

Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 7 Oct 2009 (doi:10.1038/nature08516).

Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large genetic association studies. Nature Genet. 36, 512–517 (2004).

Clayton, D. G. et al. Population structure, differential bias and genomic control in a large-scale, case–control association study. Nature Genet. 37, 1243–1246 (2005).

Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet. 38, 904–909 (2006). An invaluable approach for dealing with genetic association artefacts caused by ethnic admixture.

Ewens, W. J. & Spielman, R. S. The transmission/disequilibrium test: history, subdivision, and admixture. Am. J. Hum. Genet. 57, 455–464 (1995).

Tishkoff, S. A. et al. Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science 271, 1380–1387 (1996).

Tarazona-Santos, E. & Tishkoff, S. A. Divergent patterns of linkage disequilibrium and haplotype structure across global populations at the interleukin-13 (IL13) locus. Genes Immun. 6, 53–65 (2005).

Shriner, D. et al. Transferability and fine-mapping of genome-wide associated loci for adult height across human populations. PLoS ONE 4, e8398 (2009).

Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

Harris, T. D. et al. Single-molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008).

Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotech. 26, 1146–1153 (2008).

Hillier, L. W. et al. Whole-genome sequencing and variant discovery in C. elegans. Nature Methods 5, 183–188 (2008).

Shendure, J. & Ji, H. Next-generation DNA sequencing. Nature Biotech. 26, 1135–1145 (2008).

Agarwal, A. et al. Hemoglobin C associated with protection from severe malaria in the Dogon of Mali, a West African population with a low prevalence of hemoglobin S. Blood 96, 2358–2363 (2000).

Modiano, D. et al. Haemoglobin S and haemoglobin C: 'quick but costly' versus 'slow but gratis' genetic adaptations to Plasmodium falciparum malaria. Hum. Mol. Genet. 17, 789–799 (2008).

Modiano, D. et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature 414, 305–308 (2001).

Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nature Genet. 39, 906–913 (2007).

Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 3, e114 (2007).

Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009). A state-of-the-art imputation method that is particularly relevant to the availability of whole-genome sequence data.

Huang, L. et al. Genotype-imputation accuracy across worldwide human populations. Am. J. Hum. Genet. 84, 235–250 (2009).

Hanchard, N. et al. Classical sickle β-globin haplotypes exhibit a high degree of long-range haplotype similarity in African and Afro-Caribbean populations. BMC Genet. 8, 52 (2007).

Chakravarti, A. et al. Nonuniform recombination within the human β-globin gene cluster. Am. J. Hum. Genet. 36, 1239–1258 (1984).

Pagnier, J. et al. Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc. Natl Acad. Sci. USA 81, 1771–1773 (1984).

Chebloune, Y. et al. Structural analysis of the 5′ flanking region of the β-globin gene in African sickle cell anemia patients: further evidence for three origins of the sickle cell mutation in Africa. Proc. Natl Acad. Sci. USA 85, 4431–4435 (1988).

Rotimi, C. N. Inauguration of the African Society of Human Genetics. Nature Genet. 36, 544 (2004).

Newport, M. J. & Rotimi, C. N. Reducing the global genomic inequity gap: development of an African genome project. Public Health Genomics 12, 251–252 (2009).

Sirugo, G. et al. A national DNA bank in The Gambia, West Africa, and genomic research in developing countries. Nature Genet. 36, 785–786 (2004).

Manolio, T. A. et al. New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nature Genet. 39, 1045–1051 (2007).

Chokshi, D. A., Parker, M. & Kwiatkowski, D. P. Data sharing and intellectual property in a genomic epidemiology network: policies for large-scale research collaboration. Bull. World Health Organ. 84, 382–387 (2006).

Kaye, J., Heeney, C., Hawkins, N., de Vries, J. & Boddington, P. Data sharing in genomics — re-shaping scientific practice. Nature Rev. Genet. 10, 331–335 (2009).

Parker, M. et al. Ethical data-release in genome-wide association studies in developing countries. PLoS Med. 6, e1000143 (2009). This article discusses the ethical implications of data sharing and data release in large-scale genetic studies conducted in Africa.

Chokshi, D. & Kwiatkowski, D. Ethical challenges of genomic epidemiology in developing countries. Genomics Soc. Policy 1, 1–15 (2005). Article

Chokshi, D. A. et al. Valid consent for genomic epidemiology in developing countries. PLoS Med. 4, e95 (2007).

Marshall, P. A. et al. Voluntary participation and informed consent to international genetic research. Am. J. Public Health 96, 1989–1995 (2006).

Tekola, F. et al. Tailoring consent to context: designing an appropriate consent process for a biomedical study in a low income setting. PLoS Negl. Trop. Dis. 3, e482 (2009).

Caulfield, T. et al. Race and ancestry in biomedical research: exploring the challenges. Genome Med. 1, 8 (2009).