Method of power density determination in microwave discharge, sustained in hydrogen–methane gas mixture
Tài liệu tham khảo
Grotjohn, 2002, Microwave Plasma-Assisted Diamond Film Deposition, 211
Silva, 2009, Microwave engineering of plasma-assisted CVD reactors for diamond deposition, J. Phys. Condens. Matter, 21, 364202, 10.1088/0953-8984/21/36/364202
Gu, 2012, Microwave plasma reactor design for high pressure and high power density diamond synthesis, Diam. Relat. Mater., 24, 210, 10.1016/j.diamond.2012.01.026
Hemawan, 2010, Improved microwave plasma cavity reactor for diamond synthesis at high-pressure and high power density, Diam. Relat. Mater., 19, 1446, 10.1016/j.diamond.2010.07.005
Derkaoui, 2014, Spectroscopic analysis of H2/CH4 microwave plasma and fast growth rate of diamond single crystal, J. Appl. Phys., 115, 233301, 10.1063/1.4883955
Vikharev, 2005, Studies of pulsed and continuous microwave discharges used to deposit diamond films, Plasma Phys. Rep., 31, 338, 10.1134/1.1904150
Mankelevich, 2008, Plasma-chemical processes in microwave plasma-enhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures, J. Appl. Phys., 104, 113304, 10.1063/1.3035850
Ma, 2009, Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition, J. Appl. Phys., 105, 043302, 10.1063/1.3078032
Hassouni, 1998, Modeling of H2 and H2/CH4 moderate-pressure microwave plasma used for diamond deposition, Plasma Sources Sci. Technol., 18, 325
Lombardi, 2005, Modeling of microwave discharges of H2 admixed with CH4 for diamond deposition, J. Appl. Phys., 98, 053303, 10.1063/1.2034646
Koldanov, 2005, Self-consistent simulation of pulsed and continuous microwave discharges in hydrogen, Plasma Phys. Rep., 31, 965, 10.1134/1.2131133
Vikharev, 2007, Study of microwave plasma-assisted chemical vapor deposition of poly- and single-crystalline diamond films, Radiophys. Quantum Electron., 50, 913, 10.1007/s11141-007-0085-x
Rau, 2000, Monte Carlo simulation of a microwave plasma in hydrogen, J. Phys. D. Appl. Phys., 33, 3214, 10.1088/0022-3727/33/24/314
Hassouni, 1999, Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor, J. Appl. Phys., 86, 134, 10.1063/1.370710
Lebedev, 1998, Ion composition of no equilibrium hydrogen- methane plasma, High Temp., 36, 510
Coburn, 1980, Optical emission spectroscopy of reactive plasmas: a method for correlating emission intensities to reactive particle density, J. Appl. Phys., 51, 3134, 10.1063/1.328060
Dyatko, 1998, Actinometric method for measuring hydrogen-atom density in a glow discharge plasma, Plasma Phys. Rep., 24, 1041
Gicquel, 1998, Validation of actinometry for estimating relative hydrogen atom densities and electron energy evolution in plasma assisted diamond deposition reactors, J. Appl. Phys., 83, 7504, 10.1063/1.367514
Wouters, 1999, Quenching of excited Ar I and H by H2 in a gas discharge, J. Phys. B Atomic Mol. Phys., 32, 2869, 10.1088/0953-4075/32/12/307
Francis, 1997, Quenching of the 750.4nm argon actinometry line by H2 and several hydrocarbon molecules, Appl. Phys. Lett., 71, 3796, 10.1063/1.120555
Vikharev, 2007, Gas temperature and electron concentration measurements in a 30GHz gyrotron-based CVD reactor, 1653
Lombardi, 2004, Determination of gas temperature and C2 absolute density in Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition from the C2 Mulliken system, Plasma Sources Sci. Technol., 13, 375, 10.1088/0963-0252/13/3/003
Prasad, 1994, Fourier transform spectroscopy of the Swan (d3Пg – a3Пu) system of the jet-cooled C2 molecule, Astrophys. J., 426, 812, 10.1086/174118
Pellerin, 1996, Application of the (0; 0) Swan band spectrum for temperature measurements, J. Phys. D. Appl. Phys., 29, 2850, 10.1088/0022-3727/29/11/019