Method development for evaluating the redox state of Callovo-Oxfordian clayrock and synthetic montmorillonite for nuclear waste management

Applied Geochemistry - Tập 49 - Trang 184-191 - 2014
Mathilde Didier1,2,3, Antoine Géhin2, Jean-Marc Grenèche4, Laurent Charlet2, Eric Giffaut1
1ANDRA, National Radioactive Waste Management Agency, Science Department, 92298 Châtenay-Malabry Cedex, France
2ISTerre, Université de Grenoble 1, CNRS, 38041 Grenoble Cedex 9, France
3CEA/LITEN/DTNM/LCSN, Laboratory of Chemistry and Nanomaterials Safety, 38054 Grenoble Cedex, France
4LUNAM, Université du Maine, Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, 72085 Le Mans, France

Tài liệu tham khảo

Addison, W.E., Sharp, J.H., 1963, Redox behaviour of iron in hydroxylated silicates. In: 11th National Conference on Clays and Clay Minerals. Ayala-Luis, 2010, One-pot synthesis and characterization of FeII–FeIII hydroxide (green rust) intercalated with C9–C14 linear alkyl carboxylates, Appl. Clay Sci., 50, 512, 10.1016/j.clay.2010.10.002 Bardelli, 2014, Hydrogen uptake and diffusion in Callovo-Oxfordian clay rock for nuclear waste disposal technology, Appl. Geochem., 10.1016/j.apgeochem.2014.06.019 Benali, 2001, Effect of orthophosphate on the oxidation products of Fe(II)–Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite, Geochim. Cosmochim. Acta, 65, 1715, 10.1016/S0016-7037(01)00556-7 Bergaya, F., Barrault, J., 1990. Pillard layered structures. In: Mitchell, I.V. (Ed.), Current Trend and Applications. Bergaya, F., Hassoun, N., Gatineau, L., Barrault, J., 1991, Mixed Al–Fe pillared laponites: preparation, characterization and catalytic properties in syngas conversion. In: Poncelet, G., P.A.J.P.G., Delmon, B. (Eds.), Studies in Surface Science and Catalysis. Elsevier, pp. 329–336. Bergaya, F., Theng, B.K.G., Lagaly, G., 2006, Handbook of clay science. Brabers, 1998, Impurity effects upon the Verwey transition in magnetite, Phys. Rev. B, 58, 14163, 10.1103/PhysRevB.58.14163 Charlet, 2005, Fe(II)–Na(I)–Ca(II) cation exchange on montmorillonite in chloride medium: evidence for preferential clay adsorption of chloride – metal ion pairs in seawater, Aquat. Geochem., 11, 115, 10.1007/s10498-004-1166-5 Childs, 1980, Mossbauer spectra of proto-ferrihydrite at 77K and 295K, and a reappraisal of the possible presence of akaganeite in New Zealand soils, Soil Res., 18, 245, 10.1071/SR9800245 Chirchi, 2002, Use of various Fe-modified montmorillonite samples for 4-nitrophenol degradation by H2O2, Appl. Clay Sci., 21, 271, 10.1016/S0169-1317(02)00088-1 Choudary, 1994, Fe3+-montmorillonite catalyst for selective nitration of chlorobenzene, J. Mol. Catal., 87, 33, 10.1016/0304-5102(93)E0221-2 Cornell, 2003 Coyne, 1986, Effect of adsorbed iron on thermoluminescence and electron spin resonance spectra of Ca–Fe-exchanged montmorillonite, Clays Clay Min., 34 Diamant, 1982, Characterization of adsorbed iron in montmorillonite by Mössbauer spectroscopy, Clays Clay Min., 30, 63, 10.1346/CCMN.1982.0300108 Didier, 2012, Adsorption of hydrogen gas and redox processes in clays, Environ. Sci. Technol., 46, 3574, 10.1021/es204583h Doriguetto, 2003, Characterization of a natural magnetite, Phys. Chem. Min., 30, 249, 10.1007/s00269-003-0310-x Drits, 2000, A model for the mechanism of Fe3+ to Fe2+ reduction in dioctahedral smectites, Clays Clay Min., 48, 185, 10.1346/CCMN.2000.0480204 Ebitani, 2002, Creation of a chain-like cationic iron species in montmorillonite as a highly active heterogeneous catalyst for alkane oxygenations using hydrogen peroxide, Chem. Commun., 690, 10.1039/b200255h Ferrage, 2005, Influence of pH on the interlayer cationic composition and hydration state of Ca-montmorillonite: analytical chemistry, chemical modelling and XRD profile modelling study, Geochim. Cosmochim. Acta, 69, 2797, 10.1016/j.gca.2004.12.008 Gaucher, 2004, ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling, Phys. Chem. Earth, 29, 55, 10.1016/j.pce.2003.11.006 Géhin, 2002, Synthesis of Fe(II–III) hydroxysulphate green rust by coprecipitation, Solid State Sci., 4, 61, 10.1016/S1293-2558(01)01219-5 Géhin, 2007, Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral, Geochim. Cosmochim. Acta, 71, 863, 10.1016/j.gca.2006.10.019 Génin, J.M.R., Rezel, R., Bauer, P., Olowe, A., Beral, A., 1986. Mössbauer spectroscopy. Characterization and electrochemical study of the kinetics of oxidation of iron in chlorinated aqueous media: structure and equilibrium diagram of green rust one. In: Duprat, M. (Ed.), Materials Science Forum, Electrochemical Methods in Corrosion Research, vol. 8, pp. 477-490. Génin, 1996, On the stoichiometry and pourbaix diagram of Fe(II)–Fe(III) hydroxy-sulphate or sulphate-containing green rust 2: an electrochemical and Mössbauer spectroscopy study, Corr. Sci., 38, 1751, 10.1016/S0010-938X(96)00072-8 Génin, 2005, Fougerite and FeII–III hydroxycarbonate green rust; ordering, deprotonation and/or cation substitution; structure of hydrotalcite-like compounds and mythic ferrosic hydroxide, Solid State Sci., 7, 545, 10.1016/j.solidstatesciences.2005.02.001 Génin, 2006, Synthesis of green rusts by oxidation of Fe(OH)2, their products of oxidation and reduction of ferric oxyhydroxides; – pH Pourbaix diagrams, Comp. Rend. Geosci., 338, 433, 10.1016/j.crte.2006.04.004 Gorski, 2012, Redox properties of structural Fe in clay minerals: 1. Electrochemical quantification of electron donating and accepting capacities of smectites, Environ. Sci. Technol., 46, 9360, 10.1021/es3020138 Gorski, 2012, Redox properties of structural Fe in clay minerals: 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1, Environ. Sci. Technol., 46, 9369, 10.1021/es302014u Gorski, 2013, Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties, Environ. Sci. Technol., 47, 13477, 10.1021/es403824x Greatrex, 1971, Mossbauer spectroscopy, 478, 10.1039/9781847554888-00478 Gütlich, 2011 Häggström, 1977, Magnetic dipolar and electric quadrupolar effects on the Mössbauer spectra of magnetite above the Verwey transition, Hyper. Interact., 5, 201, 10.1007/BF01021693 Hargrove, 1970, Mössbauer measurements of magnetite below the Verwey transition, Solid State Commun., 8, 303, 10.1016/0038-1098(70)90455-2 Helsen, 1983, Characterization of iron(II)- and iron(III)-exchanged montmorillonite and hectorite using the Mössbauer effect, Clay Min., 13, 117, 10.1180/claymin.1983.018.2.01 Hirt, 1993, Thermal generation of ferromagnetic minerals from iron-enriched smectites, Geophys. J. Int., 115, 1161, 10.1111/j.1365-246X.1993.tb01518.x Huggins, 1983, Observations on low-temperature oxidation of minerals in bituminous coals, Int. J. Coal Geol., 3, 157, 10.1016/0166-5162(83)90008-3 Johnston, 1987, Iron substitution in montmorillonite, illite, and glauconite by 57Fe Mössbauer spectroscopy, Clays Clay Min., 35 Kamei, 1999, Fe(II)–Na ion exchange at interlayers of smectite: adsorption–desorption experiments and a natural analogue, Eng. Geol., 54, 15, 10.1016/S0013-7952(99)00057-5 Komadel, 1990, Reduction and reoxidation of nontronite – extent of reduction and reaction-rates, Clays Clay Min., 38, 203, 10.1346/CCMN.1990.0380212 Komadel, 1994, Chemical stability of aluminium–iron- and iron-pillared montmorillonite: extraction and reduction of iron, J. Chem. Soc., Chem. Commun., 1243, 10.1039/C39940001243 Komadel, 2006, Structural Fe(III) reduction in smectites, Appl. Clay Sci., 34, 88, 10.1016/j.clay.2005.10.016 Lear, 1985, Role of structural hydrogen in the reduction and reoxidation of iron in nontronite, Clays Clay Min., 33, 539, 10.1346/CCMN.1985.0330609 Letaief, 2002, Fe-rich smectites from Gafsa (Tunisia): characterization and pillaring behaviour, Clay Min., 37, 517, 10.1180/0009855023730050 Lundgreen, 1989, Photostimulated oxidation of Fe2+ (aq): a Mars simulation experiment studied by Mössbauer spectroscopy, Phys. Scripta, 39, 670, 10.1088/0031-8949/39/5/029 Madsen, 1986, Magnetic properties of ferrihydrite, Hyper. Interact., 27, 329, 10.1007/BF02354773 Mayhew, 1978, The redox potential of dithionite and SO−2 from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase, Euro. J. Biochem., 85, 535, 10.1111/j.1432-1033.1978.tb12269.x Mishra, 1998, Transition metal pillared clay 4. A comparative study of textural, acidic and catalytic properties of chromia pillared montmorillonite and acid activated montmorillonite, Appl. Catal. A: Gen., 166, 123, 10.1016/S0926-860X(97)00247-0 Mody, 1993, Alumina-pillared clay of improved thermal stability, Appl. Clay Sci., 8, 53, 10.1016/0169-1317(93)90025-V Mössbauer, 2000, The discovery of the Mössbauer effect, Hyper. Interact., 126, 1, 10.1023/A:1012620106837 Murad, 1986 Pálinkó, 1996, Step towards nanoscale Fe moieties: intercalation of simple and keggin-type iron-containing ions in-between the layers of Na-montmorillonite, J. Phys. Chem. Solids, 57, 1067, 10.1016/0022-3697(95)00397-5 Reinholdt, 2001, Fluorine route synthesis of montmorillonites containing Mg or Zn and characterization by XRD, thermal analysis, MAS NMR, and EXAFS spectroscopy, Euro. J. Inorg. Chem., 2831, 10.1002/1099-0682(200111)2001:11<2831::AID-EJIC2831>3.0.CO;2-6 Rightor, 1991, Iron oxide pillared clay with large gallery height: synthesis and properties as a Fischer–Tropsch catalyst, J. Catal., 130, 29, 10.1016/0021-9517(91)90089-M Schaefer, 2010, Spectroscopic evidence for interfacial Fe(II)−Fe(III) electron transfer in a clay mineral, Environ. Sci. Technol., 45, 540, 10.1021/es102560m Schwarzenbach, 2003 Silvester, 2005, Redox potential measurements and Mössbauer spectrometry of FeII adsorbed onto FeIII (oxyhydr)oxides, Geochim. Cosmochim. Acta, 69, 4801, 10.1016/j.gca.2005.06.013 Simon, 1997, Standard free enthalpy of formation of Fe(II)–Fe(III) hydroxysulphite green rust one and its oxidation into hydroxysulphate green rust two, Corr. Sci., 39, 1673, 10.1016/S0010-938X(97)00074-7 Sprenkel-Segel, 1970, Recoilless resonance spectroscopy of meteoritic iron oxides, J. Geophys. Res., 75, 6618, 10.1029/JB075i032p06618 Stevens, J.G., Khasanov, A.M., Miller, J.W., Pollak, H., Li, Z., 2005. Mössbauer Mineral Handbook. Mössbauer Effect Data Center Edition. Stucki, 2006, Chapter 8 properties and behaviour of iron in clay minerals, 423, 10.1016/S1572-4352(05)01013-5 Stucki, 1984, Preparation and handling of dithionite-reduced smectite suspensions, Clays Clay Min., 32, 191, 10.1346/CCMN.1984.0320306 Thompson, 1991, The influence of a smectite clay on the hydrolysis of iron(III), Coll. Surf., 60, 369, 10.1016/0166-6622(91)80288-Y Tournassat, 2008, Cation exchanged Fe(II) and Sr compared to other divalent cations (Ca, Mg) in the bure Callovian-Oxfordian formation: Implications for porewater composition modelling, Appl. Geochem., 23, 641, 10.1016/j.apgeochem.2007.11.002 Truche, 2010, Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180°C: implications for nuclear waste disposal, Geochim. Cosmochim. Acta, 74, 2894, 10.1016/j.gca.2010.02.027 Wade, 1999, A Mössbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration, J. Geophys. Res., 104, 8489, 10.1029/1998JE900049 Wasserman, 1998, Effect of surface modification on the interlayer chemistry of iron in a smectite clay, Chem. Mater., 10, 559, 10.1021/cm9705597