Methanotrophs and copper

Oxford University Press (OUP) - Tập 34 Số 4 - Trang 496-531 - 2010
Jeremy D. Semrau1, Alan A. DiSpirito2, Sukhwan Yoon1
1Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, MI, USA
2Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1111/j.1365-2958.2006.05238.x

Alonso C Suidan MT Sorial GA Smith FL Biswas P Smith PJ Brenner RC (1997) Gas treatment in trickle-bed biofilters: biomass, how much is enough? Biotechnol Bioeng 54: 583–594.

10.1111/j.1574-6968.1995.tb07421.x

10.1111/j.1462-2920.2009.01984.x

10.1128/AEM.66.12.5259-5266.2000

10.1128/AEM.67.9.4009-4016.2001

10.1073/pnas.0702643105

10.1038/ismej.2008.21

Balasubramanian R Rosenzweig A (2007) Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Accounts Chem Res 40: 573–580.

Barlaz MA Green RB Chanton JP Goldsmith CD Hater GR (2004) Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ Sci Technol 38: 4891–4899.

Barry JP Buck KR Kochevar RK Nelson DC Fujiwara Y Goffredi SK Hashimoto J (2002) Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan. Invertebr Biol 121: 47–54.

10.1042/BJ20020823

Bédard C Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53: 68–84.

10.1021/ja804747d

10.1016/0038-0717(95)00104-M

10.1111/j.1574-6941.1997.tb00414.x

Berestovskaya YY Vasil'eva LV Chestnykh OV Zavarzin GA (2002) Methanotrophs of the psychrophilic microbial community of the Russian Arctic tundra. Microbiology (Russian) 71: 460–466.

10.1111/j.1574-6968.2002.tb11413.x

10.1016/j.aquaculture.2004.11.017

10.1021/es950212+

10.1111/j.1574-6968.1997.tb10284.x

10.1016/S0168-6496(03)00304-0

10.1038/35000193

10.1007/s002030050527

10.1111/j.1574-6968.1999.tb13392.x

10.1046/j.1462-2920.2003.00450.x

Boeckx P Van Cleemput O (1996) Methane oxidation in a neutral cover soil: influence of moisture content, temperature, and nitrogen-turnover. J Environ Qual 25: 178–183.

Boeckx P Van Cleemput O Villaralvo I (1996) Methane emission from a landfill and the methane oxidizing capacity of its cover soil. Soil Biol Biochem 28: 1397–1405.

10.1021/es960909a

10.1016/j.femsec.2004.02.006

Bosma T Janssen DB (1998) Conversion of chlorinated propanes by Methylosinustrichosporium OB3b expressing soluble methane monooxygenase. Appl Microbiol Biot 50: 105–112.

Bothe H Møller Jensen K Mergel A Larsen J Jørgensen C Bothe H Jørgensen L (2002) Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl Microbiol Biot 59: 33–39.

Bowman J (2006) The methanotrophs – the families Methylococcaceae and Methylocystaceae Ch. 3.1.14. Prokaryotes 5: 266–289, DOI: DOI: 10.1007/0-387-30745-1_15.

10.1099/00207713-43-4-735

10.1099/00207713-45-1-182

10.1099/00221287-143-4-1451

Brantner C Buchholz L McSwain C Newcomb L Remsen C Collins M (1997) Intracytoplasmic membrane formation in Methylomicrobium album BG8 in the growth medium. Can J Microbiol 43: 672–676.

Buckley DH Schmidt TM (2002) Exploring the diversity of soil: a microbial rainforest. Biodioversity of Microbial Life ( Staley JT Reysenbach A-L , eds), pp. 183–208. Wiley-Liss Inc., New York, NY.

10.1099/00221287-130-12-3327

Carmen RE Vincent RK (1998) Measurements of soil gas and atmospheric methane content on one active and two inactive landfills in Wood County, Ohio. Environ Eng Geosci 4: 317–329.

10.1038/325346a0

Cavanaugh CM Wirsen CO Jannasch HW (1992) Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge. Appl Environ Microb 58: 3799–3803.

10.1002/cbic.200400283

10.1021/bi0497603

Chan SI Wang V Lai J Yu S Chen P Chen K Chen C Chan M (2007) Redox potentiometry studies of particulate methane monooxygenase: support for a trinuclear copper cluster active site. Angew Chem Int Edit 46: 1992–1994.

Chen Y Dumont MG Cébron Am Murrell JC (2007) Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ Microbiol 9: 2955–2969.

10.1111/j.1462-2920.2007.01466.x

10.1126/science.233.4770.1306

10.1128/JB.185.19.5755-5764.2003

10.1099/mic.0.28169-0

10.1021/bi051815t

Choi DW Do Y Zea C et al. (2008) Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Pb(II), U(VI), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b. J Inorg Biochem 100: 2150–2161.

Christophersen M Linderød L Jensen PE Kjeldsen P (2000) Methane oxidation at low temperatures in soil exposed to landfill gas. J Environ Qual 29: 1989–1997.

10.1042/bj1710461

10.1042/bj1770903

10.1042/bj1650395

Collins MLP Buchholz LA Remsen CC (1991) Effect of copper on Methylomonas albus BG8. Appl Environ Microbiol 57: 1261–1264.

Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60: 609–640.

10.1006/abbi.2001.2628

Cox HHJ Moerman RE Van Baalen S Van Heiningen WNM Doddema HJ Harder W (1997) Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei . Biotechnol Bioeng 53: 259–266.

Crill PM Martikainen PJ Nykänen H Silvola J (1994) Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biol Biochem 10: 1331–1339.

10.1128/MMBR.66.2.223-249.2002

10.1099/mic.0.26061-0

Czepial PM Mosher B Crill PM Hariss RC (1996) Quantifying the effect of oxidation on landfill emissions. J Geophys Res 101: 16721–16729.

10.1098/rstb.2005.1657

10.1098/rstb.1982.0056

Dalton H Prior SD Leak DJ Stanley SH (1984) Regulation and control of methane monooxygenase. Microbial Growth on C1 Compounds ( Crawford RL Hanson RS , eds), pp. 75–82. American Society for Microbiology, Washington, DC.

10.1111/j.1462-2920.2005.01113.x

10.1126/science.282.5387.281

Dedysh SN Panikov NS Tiedje JM (1998b) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microb 64: 922–929.

10.1099/00207713-50-3-955

Dedysh SN Khmelenina VN Suzina NE Trotsenko YA Semrau JD Liesack W Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Micr 52: 251–256.

10.1099/ijs.0.02805-0

10.1128/JB.187.13.4665-4670.2005

Dedysh SN Belova SE Bodelier PLE Smirnova KV Khmelenina VN Chidthaisong A Trotsenko YA Leisack W Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Intl J Syst Evol Micr 57: 472–479.

10.1111/j.1462-2920.2006.01235.x

10.1007/s003740000313

De Visscher A Boeckx P Van Cleemput O (2007) Artificial methane sinks. Greenhouse Gas Sinks ( Reay DS Hewitt CN Grace J , eds), pp. 184–200. Wallingford, Oxfordshire, UK.

10.1007/BF00124489

DiSpirito AA Zahn JA Graham DW Kim HJ Larive CK Derrick TS Cox CD Taylor A (1998) Copper-binding compounds from Methylosinus trichosporium OB3b. J Bacteriol 180: 3606–3613.

DiSpirito AA Kunz RC Choi DW Zahn JA (2004) Respiration in methanotrophs. Respiration in Archaea and Bacteria, Ch. 7, Vol. 16 ( Zannoni D , ed), pp. 149–168. Springer, Dordrecht, The Netherlands.

Duddleston KN Kinney MA Kiene RP Hines ME (2002) Anaerobic microbial biogeochemistry in a northern bog: acetate as a dominant metabolic end product. global Biogeochem Cy 16, DOI: DOI: 10.1029/2001GB001402.

Dunfield P (2007) The soil methane sink. Greenhouse Gas Sinks ( Reay DS Hewitt CN Smith KA Grace J , eds), pp. 152–170. CAB International, Wallingford, UK.

Dunfield P Knowles R (1995) Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl Environ Microb 61: 3129–3135.

Dunfield PF Liesack W Henckel T Knowles R Conrad R (1999) High-affinity methane oxidation by a soil enrichment culture containing a Type II methanotroph. Appl Environ Microb 65: 1009–1014.

10.1099/ijs.0.02481-0

10.1038/nature06411

10.1111/j.1462-2920.2006.01038.x

10.1016/S0016-2361(03)00040-1

Eguchi M Kitagawa M Suzuki Y Nakamuara M Kawai T Okamara K Sasaki S Miyake Y (2001) A field evaluation of in situ biodegradation of trichloroethylene through methane injection. Water Res 35: 2145–2152.

Einola J-HK Karhu AE Rintala JA (2008) Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse gas emissions. Waste Manage 28: 97–111.

Elango N Radhakrishnan R Froland WA Wallar BJ Earhart CA Lipscomb JD Ohlendorf DH (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci 6: 556–568.

Energy Information Administration (2008) Emission of Greenhouse Gases in the United States 2007. Office of Integrated Analysis and Forecasting, US Department of Energy, Washington, DC. Available at http://www.eia.doe.gov/oiaf/1605/ggrpt/pdf/0573(2007).pdf.

Ensign SA Hyman MR Arp DJ (1993) In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol 175: 1971–1980.

10.1073/pnas.0702791104

10.1074/jbc.M805527200

10.1111/j.1365-2958.2009.06837.x

Eshinimaev BT Khmelenina VN Trotsenko YA (2008) First isolation of a Type II methanotroph from a soda lake. Microbiology (Russian) 77: 628–631.

Filatova LV Berg IA Krasil'nikova EN Ivanosky RN (2005) A study of the mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate shunt: enzymes of the citramalate cycle in Rhodobacter sphaeroides. Microbiology (Russian) 74: 27–278.

10.1007/BF00394838

Fitch M Graham D Arnold R Agarwal S Phelps P Speitel G Georgiou G (1993) Phenotypic characterization of copper-resistant mutants of Methylosinus trichosporium OB3b. Appl Environ Microb 59: 2771–2776.

10.1007/s002030050478

10.1007/s002030100307

10.1128/AEM.02030-07

Forrester SB Han J-I Dybas MJ Semrau JD Lastoskie CM (2005) Characterization of a mixed methanotrophic culture capable of chloroethylene degradation. Environ Eng Sci 22: 177–186.

Fox BG Surerus KK Münck E Lipscomb JD (1988) Evidence for a μ-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. J Biol Chem 263: 10553–10556.

Fox BG Froland WA Dege JE Lipscomb JD (1989) Methane monooxygenase from Methylosinus trichosporium OB3b: purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem 264: 10023–10033.

10.1021/ja00062a039

Fuse H Ohta M Takimura O Murakami K Inoue H Yamaoka Y Olcarit JM Omori T (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotech Bioch 62: 1925–1931.

Gebert J Gröngröft A (2006) Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manage 26: 399–407.

10.1016/S0956-053X(03)00105-3

10.1016/j.femsle.2004.09.013

10.1111/j.1462-2920.2007.01534.x

10.1128/AEM.66.3.966-975.2000

Gilch S Meyer O Schmidt I (2009) A soluble form of ammonia monooxygenase in Nitrosomonas europaea . Biol Chem 390: 863–873.

Green J Dalton H (1985) Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 260: 15795–15801.

Green J Dalton H (1989) Substrate specificity of soluble methane monooxygenase. J Biol Chem 264: 17698–17703.

Hakemian AS Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76: 18.11–18.19.

10.1021/bi800598h

Han B Su T Wu H Gou Z Xing X-H Jiang H Chen Y Li X Murrell JC (2009) Paraffin oil as a ‘methane vector’ for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl Microbiol Biot 83: 669–677.

10.1111/j.1574-6968.2000.tb09140.x

10.1111/j.1462-2920.2004.00572.x

10.1007/s002030050776

Hanson RS Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60: 439–471.

Haubrichs R Widmann R (2006) Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manage 26: 408–416.

10.1007/s00203-008-0445-8

10.1074/jbc.M800340200

10.1128/AEM.66.5.1801-1808.2000

10.1046/j.1462-2920.2000.00149.x

10.1111/j.1574-6941.2001.tb00778.x

Heyer J Berger U Hardt M Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Micr 55: 1817–1826.

Hilger H Barlaz M Wollum A (2000) Landfill CH4 oxidation: response to vegetation, fertilization and liming. J Environ Qual 29: 324–334.

10.1016/j.cbpa.2009.02.025

10.1073/pnas.0911413106

10.1029/2001GL012901

Hines ME Duddleston KN Rooney-Varga JN Fields D Chanton JP (2008) Uncoupling of acetate degradation from methane formation in Alaskan wetlands: connections to vegetation distribution. global Biogeochem Cy 22: 1029.

10.1099/13500872-141-8-1947

Holmes AJ Roslev P McDonald IR Iversen N Henricksen K Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microb 65: 3312–3318.

Hou CT Patel R Laskin AI Barnabe N (1979) Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4n-alkenes by methylotrophic bacteria. Appl Environ Microbiol 38: 127–134.

10.1186/1745-6150-3-26

10.1177/0734242X07087977

10.1046/j.1462-2920.2003.00543.x

IPCC (2007) Climate Change 2007: Synthesis Report. Cambridge University Press, Cambridge, UK.

Iranpour R Cox HHJ Deshusses MA Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog 24: 254–267.

10.1073/pnas.0704162105

10.1111/j.1574-6941.2000.tb00707.x

10.1016/S0038-0717(00)00248-0

10.1016/S0168-1656(03)00005-1

10.1111/j.1574-6968.1993.tb05809.x

10.1016/j.ecoleng.2008.02.003

10.1078/0723-2020-00028

10.1016/S0723-2020(99)80010-1

Kalyuzhnaya MG Stolyae SM Auman AJ Lara JC Lidstrom ME Chistoserdova L (2005) Methylosarcina lacus sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina . Int J Syst Evol Micr 55: 2345–2350.

Kalyuzhnaya MG Khmelenina VN Eshinimaev B Sorokin D Fuse H Lidstrom ME Trotsenko YA (2008) Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium . Int J Syst Evol Micr 58: 591–596.

Kao W-C Wang VC-C Huang Y-C Yu SS-F Chang T-C Chan SI (2008) Isolation, purification, and characterization of hemerythrin from Methylococcus capsulatus (Bath). J Inorg Chem 102: 1607–1614.

10.1128/AEM.69.4.2386-2388.2003

10.1111/j.1742-4658.2005.04663.x

Kennes C Cox HHJ Doddema HJ Harder W (1996) Design and performance of biofilters for the removal of alkylbenzene vapors. J Chem Technol Biot 66: 300–304.

Kettunen RH Einola J-K M Rintala JA (2006) Landfill methane oxidation in engineered soil columns at low temperature. Water Air Soil Poll 177: 313–334.

10.1007/s002849900249

10.1007/s002030050786

Kightley D Nedwell DB Cooper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microb 61: 592–601.

10.1126/science.1098322

10.1111/j.1574-6941.1997.tb00361.x

King GM Adamsen PS (1992) Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra . Appl Environ Microb 48: 2758–2763.

10.1021/bi050820u

10.1111/j.1462-2920.2005.00814.x

10.1111/j.1462-2920.2005.00791.x

10.1016/j.bbapap.2004.02.007

Kolesnikov OM Dedysh SN Panikov NS (2004) Inhibition of growth and methane consumption in Methylocapsa acidiphila by mineral salts. Microbiology (translated from Mikrobiologiya) 73: 574–576.

10.1128/JB.184.6.1750-1758.2002

10.1128/JB.187.4.1523-1526.2005

10.1046/j.1365-2486.2001.00395.x

Kuhad RC Singh A Tripathi KK Saxena RK Eriksson K-EL (1997) Microorganisms as an alternative source of protein. Nutr Rev 55: 65–75.

10.1128/AEM.01604-06

10.1007/s00253-009-2238-7

10.1007/BF00245336

10.1007/BF00443577

10.1073/pnas.0536703100

10.1038/nature03311

10.1111/j.1462-2920.2004.00635.x

10.1128/AEM.71.10.6458-6462.2005

10.1007/s002030000170

Lindner AS Semrau JD Adriaens P (2005) Substituent effects on the oxidation of substituted biphenyl compounds by the type II methanotroph strain CSC1. Arch Microbiol 183: 266–276.

10.1146/annurev.mi.48.100194.002103

10.1093/bioinformatics/btk023

Lontoh S (2000) Substrate oxidation by methanotrophs expressing particulate methane monooxygenase (pMMO): a study of whole-cell oxidation of trichloroethylene and its potential use for environmental remediation. PhD Thesis. University of Michigan.

Lontoh S Semrau JD (1998) Methane and trichloroethylene degradation by Methylosinustrichosporium OB3b expressing particulate methane monooxygenase. Appl Environ Microb 64: 1106–1114.

Lontoh S DiSpirito AA Krema CL Whittaker MR Hooper AB Semrau JD (2000) Differential Inhibition in vivo of ammonia monooxygenase, soluble methane monooxygenase and membrane-associated methane monooxygenase by phenylacetylene. Environ Microbiol 2: 485–494.

10.1046/j.1462-2920.2002.00278.x

MacDonald JA Skiba U Sheppard LJ Ball B Roberts JD Smith KA Fowler D (1997) The effect of nitrogen deposition and seasonal variability on methane oxidation and nitrous oxide emission rates in an upland spruce plantation and moorland. Atmos Environ 31: 3693–3706.

Martell AE Smith RM (1984) Critical Stability Constants, Vol. I. Plenum Press, New York.

10.1021/ja077682b

10.1039/b714132g

10.1128/JB.187.4.1415-1425.2005

Melse RW Van Der Werf AW (2005) Biofiltration for mitigation of methane emission from animal husbandry. Environ Sci Technol 39: 5460–5468.

10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P

10.1021/bi982975q

10.1128/AEM.72.2.1346-1354.2006

10.1002/1439-7633(20020603)3:6<490::AID-CBIC490>3.0.CO;2-N

10.1128/AEM.66.4.1730-1733.2000

Morton J Hayes K Semrau JD (2000b) Bioavailability of chelated and soil-absorbed copper to Methylosinus trichosporium OB3b. Environ Sci Technol 34: 4917–4922.

Mosher BW Czepiel PM Harriss RC Shorter JH Kolb CE McManus JB Allwine E Lamb BK (1999) Methane emissions at nine landfill sites in the northeastern United States. Environ Sci Technol 33: 2088–2094.

10.1007/s11745-004-1304-5

10.1016/S0966-842X(00)01739-X

10.1021/bi061294p

Nguyen H-H Shiemke AK Jacobs SJ Hales BJ Lidstrom ME Chan SI (1994) The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 269: 14995–15005.

10.1021/ja961778g

10.1074/jbc.273.14.7957

10.1099/13500872-142-5-1289

10.1046/j.1365-2958.1997.4801846.x

Nikiema J Payre G Heitz M (2009) A mathematical steady state model for methane bioelimination in a closed biofilter. Chem Eng J 150: 418–425.

10.1111/j.1574-6941.1999.tb00600.x

10.1111/j.1574-6941.2008.00497.x

Okkerse WJH Ottengraf SPP Diks RMM Osinga-Kuipers B Jacobs P (1999) Long term performance of biotrickling filters removing a mixture of volatile organic compounds from an artificial waste gas: dichloromethane and methylmethacrylate. Bioproc Biosyst Eng 20: 49–57.

Oldenhuis R Vink RLJM Janssen DB Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinustrichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microb 55: 2819–2826.

Oldenhuis R Oedzes JY Van Der Waarde JJ Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinustrichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microb 57: 7–14.

10.1007/BF01575988

Omel'chenko MV Vasil'eva LV Zavazin GA Savel'eva ND Lysenko AM Mityushina LL Khmelenina VN Trotsenko YA (1996) A novel psychrophilic methanotroph of the genus Methylobacter . Microbiology (Russian) 65: 339–343.

10.1111/j.1758-2229.2009.00022.x

Øverland M Romarhein OH Ahlstrøm Ø Storebakken T Skrede A (2007) Technical quality of dog food and salmon feed containing different bacterial protein sources and processed by different extrusion conditions. Anim Feed Sci Tech 134: 124–139.

10.1074/jbc.273.36.23134

Peltola P Priha P Laakso S (1993) Effect of copper on membrane lipids and on methane monooxygenase activity of Methylococcus capsulatus (Bath). Arch Microbiol 159: 521–525.

10.1111/j.1758-2229.2009.00081.x

10.1128/AEM.69.11.6698-6702.2003

10.1038/sj.jim.2900350

Phelps P Agarwal G Speitel GJ Georgiou G (1992) Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl Environ Microb 58: 3701–3708.

10.1016/0076-6879(90)88032-6

10.1038/nature06222

10.1099/00221287-131-1-155

10.1099/00221287-131-1-155

10.1111/j.1574-6968.1985.tb00843.x

10.1038/nature03802

10.1099/ijs.0.64574-0

Reay DS Smith KA Hewitt CN (2007) Methane: importance, source and sinks. Greenhouse Gas Sinks ( Reay DS Hewitt CN Grace J , eds), pp. 143–151. Wallingford, Oxfordshire, UK.

10.1007/s002270050427

Rosenzweig AC (2008) The metal centers of particulate methane mono-oxygenase. Biochem Soc 36: 1134–1137.

10.1038/366537a0

Roslev P Iversen N (1999) Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl Environ Microb 65: 4064–4070.

Roslev P Iversen N Henriksen K (1997) Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Appl Environ Microb 63: 874–880.

10.1098/rstb.1990.0034

10.1128/AEM.71.12.8402-8410.2005

10.1177/0734242X09339325

Schmaljohann R (1991) Oxidation of potential energy sources by the methanotrophic endosymbionts of Siboglinum poeseidoni (Pogonophora). Mar Ecol-Prog Ser 76: 143–148.

Schmaljohann R Flügel HJ (1987) Methane-oxidizing bacteria in Pogonophora. Sarsia 72: 91–98.

Schmaljohann R Faber E Whiticar MJ Dando PR (1990) Co-existence of methane- and sulphur-based endosymbiosis between bacteria and invertebrates at a site in the Skagerrak. Mar Ecol-Prog Ser 61: 119–124.

Schnell S King GM (1994) Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl Environ Microb 60: 3514–3521.

Schnell S King GM (1996) Responses of methanotrophic activity in soils and cultures to water stress. Appl Environ Microb 62: 3203–3209.

10.1093/ps/86.1.87

10.1080/17450390701431953

10.1039/b111145k

10.1016/0003-2697(87)90612-9

10.1099/00221287-125-1-63

Semprini L (1997) Ch. 26. In situ transformation of halogenated aliphatic compounds under anaerobic conditions. Subsurface Restoration. ISBN 1-57504-603-3 ( Ward CH Cherry JA Scalf MR , eds), pp. 429–450. Ann Arbor Press, MI.

Semprini L McCarty PL (1990) Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics: Part 1. Biostimulation of methanotrophic bacteria. Ground Water 28: 365–374.

10.1111/j.1745-6584.1990.tb01987.x

10.1111/j.1745-6584.1991.tb00516.x

10.1016/0162-0134(94)00056-G

10.1016/j.tim.2008.02.004

10.1038/sj.jim.7000194

10.1021/np010550q

Shiemke AK DiSpirito AA Lidstrom ME Chan SI (1991) Methane monooxygenase: copper content and spectroscopic properties of the membrane-bound form. J Inorg Biochem 43: 191.

Shiemke AK Coop SA Mily T Singleton P (1995) Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors. Arch Biochem Biophys 321: 521–528.

Shimokawa C Teraoka J Tachi Y Itoh S (2006) A functional model for pMMO (particulate methane monooxygenase): hydroxylation of alkanes with H2O2 catalyzed by β-diketiminatocopper (II) complexes. J Inorg Biochem 100: 1118–1127.

10.1007/BF01568138

Sieburth JMcN Johnson PW Church VM Laux DC (1993) C1 bacteria in the water column of Chesapeake Bay, USA. III. Immunological relationships of the type species of marine monomethylamine- and methane-oxidizing bacteria to wild estuarine and oceanic cultures. Mar Ecol-Prog Ser 95: 91–102.

Smith KS Costello AM Lidstrom ME (1997) Methane and trichloroethylene oxidation by an estuarine methanotroph, Methylobacter sp. strain BB5.1. Appl Environ Microb 63: 4617–4620.

Smith RM Martell AE (1975) Critical Stability Constants, Vol. 2. Plenum Press, New Year.

Smith RM Martell AE (1989) Critical Stability Constants, Vol. 6. Plenum Press, New York.

Söhngen NL (1906) Über bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen. Centr Bakt Parasitenkd Infectionsk 15: 513–517.

10.1007/s007920070029

10.1099/mic.0.26060-0

10.1007/BF00132233

10.1039/a909079g

10.1099/00221287-107-1-19

Stirling DI Colby J Dalton H (1979) A comparison of the substrate and electron-donor specificity of the methane monooxygenase from three strains of methane oxidizing bacteria. Biochem J 177: 362–364.

Stoecker K Bendinger B Schöning B Nielsen PH Nielsen JL Baranyi C Toenshoff ER Daims H Wagner M (2006) Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. P Nat Acad Sci USA 103: 2363–2367.

10.1128/JB.183.5.1810-1812.2001

10.1111/j.1462-2920.2004.00582.x

10.1016/S0956-053X(03)00097-7

Sullivan JP Chase HA (1996) 1,2,3-Trichlorobenzene transformation by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Microbiol Biot 45: 427–433.

Takeda K Tanaka K (1980) Ultrastructure of intracytoplasmic membranes of Methanomonas margaritae cells grown under different conditions. Ant van Leewen J Microbiol Serol 46: 15–25.

Takeda K Tezuka C Fukuoka S Takahara Y (1976) Role of copper ions in methane oxidation by Methanomonas margaritae . J Ferment Technol 54: 557–562.

Takeguchi M Miyakawa K Okura I (1998) Purification and properties of particulate methane monooxygenase from Methylosinus trichosporium OB3b. J Mol Catal A-Chem 132: 145–153.

10.1093/molbev/msm092

Tani K Iwamoto T Fujimoto K Nasu M (2001) Dynamics of methanotrophs during in situ bioremediation. Microb Environ 16: 37–42.

10.1128/JB.187.13.4303-4305.2005

10.1111/j.1365-2958.2005.04861.x

Tlustos P Willison TW Baker JC Murphy DV Pavlikova D Goulding KWT Powlson DS (1998) Short-term effects of nitrogen on methane oxidation in soils. Bio Fert Soils 28: 64–70.

Tourova TP Omel'chenko MV Fegeding KV Vasil'eva (1999) The phylogenetic position of Methylobacter psychrophilus sp. nov. Microbiology (Russian) 68: 493–495.

10.1007/s00203-001-0368-0

10.1016/S0065-2164(07)00005-6

Tsubota J Eshinimaev BTs Khmelenina VH Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Micr 55: 1877–1884.

Tumanova LV Tukhvatullin IA Burbaev DSh Gvozdev RI Andersson KK (2008) The binuclear iron site of membrane-bound methane hydroxylase from Methylococcus capsulatus (strain M). Russ J Bioinorg Chem 34: 177–185.

US EPA (1996) Standards of performance for new stationary sources and guidelines for control of existing sources: municipal solid waste landfills. Code of Federal Regulations, Title 40, Sections 9, 51, 52, and 60; Fed Regist 61 (49).

10.1038/377296a0

Vacelet J Fiala-Médioni A Fisher CF Boury-Esnault N (1996) Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol-Prog Ser 145: 77–85.

Van Hylckama Vleig JET De Koning W Janssen DB (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl Environ Microb 62: 3304–3312.

10.1007/BF01576018

10.1128/AEM.02678-06

10.1007/s00203-002-0450-2

Vorholt J Chistoserdova L Lidstrom ME Thauer R (1998) The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180: 5351–5356.

10.1016/j.copbio.2006.05.005

10.1021/cr9500489

10.1021/bi002298b

10.1073/pnas.0802300105

10.1073/pnas.96.14.7877

Ward N Larsen Ø Sakwa J et al. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2: 1616–1628.

Wartiainen I Hestnes AG McDonald IR Svenning MM (2006) Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from arctic wetland soil on the Svalbard islands, Norway (78°N). Int J Syst Evol Micr 56: 109–113.

10.1007/s00203-006-0126-4

10.1111/j.1574-6941.1998.tb00486.x

Westrick JJ Mello JW Thomas RF (1984) The groundwater supply survey. J Am Water Works Ass 5: 52–59.

Whalen SC Reeburgh WS (1990) Consumption of atmospheric methane by tundra soils. Nature 356: 421–423.

Whalen SC Reeburgh WS (1996) Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol Biochem 28: 1271–1278.

Whalen SC Reeburgh WS Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microb 56: 3405–3411.

10.1099/00221287-61-2-205

10.1016/0045-6535(94)00416-R

10.1016/j.wasman.2003.12.006

Wilson JT Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microb 49: 242–243.

Winder R (2004) Methane to biomass. Chem Ind-London 17: 19.

Wise MG McArthur JV Shimkets LJ (2001) Methylosarcina fibrata gen. nov., sp. nov., and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Micr 51: 611–621.

Woertink JS Smeets PJ Groothaert MH Vance MA Sels BF Schoonheydt RA Solomon EI (2009) A [Cu2O]2+ core in Cu-ASM-5, the active site in the oxidation of methane to methanol. P Natl Acad Sci USA 106: 18909–18913.

Woodland MP Dalton H (1984) Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 259: 53–60.

Wymore RA Lee MH Keener WK Miller AR Colwell FS Watwood ME Sorenson KS Jr (2007) Field evidence for intrinsic aerobic chlorinated ethene cometabolism by methanotrophs expressing soluble methane monooxygenase. Bioremed J 11: 125–139.

10.1111/j.1574-6968.2008.01314.x

Yoon S Carey JN Semrau JD (2009a) Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl Microbiol Biot 83: 949–956.

Yoon S Kraemer SM DiSpirito AA Semrau JD (2009b) An assay for screening microbial cultures for chalkophore production. Environ Microbiol Rep, DOI: DOI: 10.1111/J.1758-2229.2009.00125.x.

Yoshizawa K Shiota Y (2006) Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. J Am Chem Soc 126: 9873–9881.

10.1128/JB.185.20.5915-5924.2003

10.1021/ja9701669

10.1016/S0162-0134(98)10078-8

10.1016/S0006-3495(99)77378-9

Zahn JA DiSpirito AA (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178: 1018–1029.

10.1128/JB.183.23.6832-6840.2001

10.1021/bi001398e