Methane Production from the Co-digestion of Algal Biomass with Crude Glycerol by Anaerobic Mixed Cultures

Waste and Biomass Valorization - Tập 11 - Trang 1873-1881 - 2018
Sureewan Sittijunda1, Alissara Reungsang2,3
1Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
2Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
3Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand

Tóm tắt

The optimization of factors affecting methane production from the co-digestion of algal biomass with crude glycerol was investigated using response surface methodology with a central composite design. The investigated parameters included algal biomass, crude glycerol and inoculum concentration. The inoculum and algal biomass concentration had a significant individual effect on the methane production (p ≤ 0.05). The interactive effect on methane production was found to be between algal biomass and crude glycerol (p ≤ 0.05). The optimal conditions were 20.02 g-VS/L of crude glycerol, 9.76 g-VS/L of inoculum concentration and 5.50 g-VS/L of algal biomass. Under optimum conditions, the maximum methane production of 58.88 mL-CH4/L was obtained. The difference between the observed methane production (58.88 mL-CH4/L) and the predicted methane (68.94 mL-CH4/L) was 14.59%. Under the optimum conditions, the energy production of 92.47 J/g-VSadded was obtained. The polymerase chain reaction-denaturing gradient gel electrophoresis analysis indicated that the methane producers present in the fermentation broth were Methanosarcina sp., Methanoregula sp., Methanospirillum sp. and Methanoculleus sp.

Tài liệu tham khảo

Johansson, B.: Security aspects of future renewable energy systems–a short overview. Energy. 61, 598–605 (2013). https://doi.org/10.1016/j.energy.2013.09.023 Assawamongkholsiri, T., Reungsang, A., Plangkang, P., Sittijunda, S.: Repeated batch fermentation for photo-hydrogen and lipid production from wastewater of a sugar manufacturing plant. Int. J. Hydrog. Energy. 43(7), 3605–3617 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.119 Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14(2), 578–597 (2010). https://doi.org/10.1016/j.rser.2009.10.003 Fairley, P.: Introduction: next generation biofuels. Nature 474, S2 (2011).https://doi.org/10.1038/474S02a Lakatos, G., Balogh, D., Farkas, A., Ördög, V., Nagy, P.T., Bíró, T., Maróti, G.: Factors influencing algal photobiohydrogen production in algal bacterial co-cultures. Algal Res. 28, 161–171 (2017). https://doi.org/10.1016/j.algal.2017.10.024 Raheem, A., Prinsen, P., Vuppaladadiyam, A.K., Zhao, M., Luque, R.: A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J. Clean. Prod. 181, 42–59 (2018). https://doi.org/10.1016/j.jclepro.2018.01.125 Reungsang, A., Pattra, S., Sittijunda, S.: Optimization of key factors affecting methane production from acidic effluent coming from the sugarcane juice hydrogen fermentation process. Energies 5(11), 4746 (2012) Ward, A.J., Lewis, D.M., Green, F.B.: Anaerobic digestion of algae biomass: a review. Algal Res. 5, 204–214 (2014). https://doi.org/10.1016/j.algal.2014.02.001 Tuesorn, S., Wongwilaiwalin, S., Champreda, V., Leethochawalit, M., Nopharatana, A., Techkarnjanaruk, S., Chaiprasert, P.: Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Biores. Technol. 144, 579–586 (2013). https://doi.org/10.1016/j.biortech.2013.07.013 Prapinagsorn, W., Sittijunda, S., Reungsang, A.: Co-digestion of napier grass and its silage with cow dung for methane production. Energies 10(10), 1654 (2017) Teixeira Franco, R., Buffière, P., Bayard, R.:Cattle manure for biogas production. Does ensiling and wheat straw addition enhance preservation of biomass and methane potential? Biofuels (2017). https://doi.org/10.1080/17597269.2017.1387751 Zamanzadeh, M., Hagen, L.H., Svensson, K., Linjordet, R., Horn, S.J.: Biogas production from food waste via co-digestion and digestion effects on performance and microbial ecology. Sci. Rep. 7(1), 17664 (2017). https://doi.org/10.1038/s41598-017-15784-w He, S., Fan, X., Katukuri, N.R., Yuan, X., Wang, F., Guo, R.-B.: Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Biores. Technol. 204, 145–151 (2016). https://doi.org/10.1016/j.biortech.2015.12.073 Mahdy, A., Ballesteros, M., González-Fernández, C.: Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Biores. Technol. 199, 319–325 (2016). https://doi.org/10.1016/j.biortech.2015.08.080 Gruber-Brunhumer, M.R., Jerney, J., Zohar, E., Nussbaumer, M., Hieger, C., Bochmann, G., Schagerl, M., Obbard, J.P., Fuchs, W., Drosg, B.: Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: influence of different storage and pretreatment methods on biogas yield. Algal Res. 12, 230–238 (2015). https://doi.org/10.1016/j.algal.2015.08.022 Passos, F., Uggetti, E., Carrère, H., Ferrer, I.: Pretreatment of microalgae to improve biogas production: a review. Biores. Technol. 172, 403–412 (2014). https://doi.org/10.1016/j.biortech.2014.08.114 Balussou, D., Kleyböcker, A., McKenna, R., Möst, D., Fichtner, W.: An economic analysis of three operational co-digestion biogas plants in Germany. Waste Biomass Valoriz. 3(1), 23–41 (2012). https://doi.org/10.1007/s12649-011-9094-2 Yen, H.-W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Biores. Technol. 98(1), 130–134 (2007). https://doi.org/10.1016/j.biortech.2005.11.010 Rétfalvi, T., Szabó, P., Hájos, A.-T., Albert, L., Kovács, A., Milics, G., Neményi, M., Lakatos, E., Ördög, V.: Effect of co-substrate feeding on methane yield of anaerobic digestion of Chlorella vulgaris. J. Appl. Phycol. 28(5), 2741–2752 (2016). https://doi.org/10.1007/s10811-016-0796-5 Nielsen, H.B., Uellendahl, H., Ahring, B.K.: Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenergy 31(11), 820–830 (2007). https://doi.org/10.1016/j.biombioe.2007.04.004 Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F., Wang, Y.: Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag. 33(12), 2653–2658 (2013). https://doi.org/10.1016/j.wasman.2013.05.014 Phanduang, O., Lunprom, S., Salakkam, A., Reungsang, A.: Anaerobic solid-state fermentation of bio-hydrogen from microalgal Chlorella sp. biomass. Int. J. Hydrog. Energy. 42(15), 9650–9659 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.084 Owen, W.F., Stuckey, D.C., Healy, J.B. Jr., Young, L.Y., McCarty, P.L.: Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13(6), 485–492 (1979). https://doi.org/10.1016/0043-1354(79)90043-5 Saraphirom, P., Reungsang, A.: Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int. J. Hydrog. Energy. 35(24), 13435–13444 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.122 Zheng, Y., Tang, X., He, D., Xu, L.: Investigation on pseudorandom properties of FCSR sequence. In: 2005 International Conference on Communications, Circuits and Systems Proceedings 2005, pp. 66–70 Kongjan, P., O-Thong, S., Angelidaki, I.: Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Biores. Technol. 102(5), 4028–4035 (2011). https://doi.org/10.1016/j.biortech.2010.12.009 Nielfa, A., Cano, R., Fdz-Polanco, M.: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 5, 14–21 (2015). https://doi.org/10.1016/j.btre.2014.10.005 Reungsang, A., Sittijunda, S., Sreela-or, C.: Methane production from acidic effluent discharged after the hydrogen fermentation of sugarcane juice using batch fermentation and UASB reactor. Renew. Energy. 86, 1224–1231 (2016). https://doi.org/10.1016/j.renene.2015.09.051 Pott, R.W.M., Howe, C.J., Dennis, J.S.: The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Biores. Technol. 152, 464–470 (2014). https://doi.org/10.1016/j.biortech.2013.10.094 Sittijunda, S., Reungsang, A.: Fermentation of hydrogen, 1,3-propanediol and ethanol from glycerol as affected by organic loading rate using up-flow anaerobic sludge blanket (UASB) reactor. Int. J. Hydrog. Energy. 42(45), 27558–27569 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.149 Venkataramanan, K.P., Venkataramanan, K.P., Boatman, J.J., Kurniawan, Y., Taconi, K.A., Bothun, G.D., Scholz, C.: Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl. Microbiol. Biotechnol. 93(3), 1325–1335 (2012). https://doi.org/10.1007/s00253-011-3766-5 Ingram, L.O.: Adaptation of membrane lipids to alcohols. J. Bacteriol. 125(2), 670–678 (1976) Kameswari, K.S.B., Kalyanaraman, C., Porselvam, S., Thanasekaran, K.: Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Technol. Environ. Policy. 14(2), 241–250 (2012). https://doi.org/10.1007/s10098-011-0391-z Hobbs, S.R., Landis, A.E., Rittmann, B.E., Young, M.N., Parameswaran, P.: Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Manag. 71, 612–617 (2018). https://doi.org/10.1016/j.wasman.2017.06.029 Sittijunda, S., Reungsang, A.: Media optimization for biohydrogen production from waste glycerol by anaerobic thermophilic mixed cultures. Int. J. Hydrog. Energy. 37(20), 15473–15482 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.185 Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H., Cheng, C.L., Lee, D.J., Bai, F.W., Chang, J.S.: Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78, 1–10 (2013). https://doi.org/10.1016/j.bej.2013.03.006 Himanshu, H., Murphy, J.D., Grant, J., O’Kiely, P.: Antagonistic effects on biogas and methane output when co-digesting cattle and pig slurries with grass silage in in vitro batch anaerobic digestion. Biomass Bioenergy 109, 190–198 (2018). https://doi.org/10.1016/j.biombioe.2017.12.027 Yan, J.: Handbook of Clean Energy Systems. Wiley, Hoboken (2015) Bayer, B., Vojvoda, J., Offre, P., Alves, R.J.E., Elisabeth, N.H., Garcia, J.A.L., Volland, J.M., Srivastava, A., Schleper, C., Herndl, G.J.: Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 10, 1051 (2015).https://doi.org/10.1038/ismej.2015.200