Methanation of carbon dioxide: an overview
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dell’Amico D B, Calderazzo F, Labella L, Marchetti F, Pampaloni G. Converting carbon dioxide into carbamato derivatives. Chemical Reviews, 2003, 103(10): 3857–3898
Mikkelsen M, Jorgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci, 2010, 3(1): 43–81
Riduan S N, Zhang Y G. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans (Cambridge, England), 2010, 39(14): 3347–3357
Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M H, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews, 2001, 101(4): 953–996
Jessop P G, Joo F, Tai C C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews, 2004, 248(21–24): 2425–2442
Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews, 2007, 107(6): 2365–2387
Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans (Cambridge, England), 2007, (28): 2975–2992
Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chem Commun (Cambridge), 2009, (11): 1312–1330
Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 2009, 148(3–4): 191–205
Lunde P J, Kester F L. Carbon dioxide methanation on a ruthenium catalyst. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 27–33
VanderWiel D P, Zilka-Marco J L, Wang Y, Tonkovich A Y, Wegeng R S. In: Spring National Meeting. Atlanta: AIChe, 2000
Chang FW, Kuo MS, Tsay MT, Hsieh MC. Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Applied Catalysis A: General, 2003, 247(2): 309–320
Du G A, Lim S, Yang Y H, Wang C, Pfefferle L, Haller G L. Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction. Journal of Catalysis, 2007, 249(2): 370–379
Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: I. Specific activity of Ni/SiO2. Journal of Catalysis, 1981, 68(1): 67–76
Peebles D E, Goodman D W, White J M. Methanation of carbon dioxide on nickel (100) and the effects of surface modifiers. Journal of Physical Chemistry, 1983, 87(22): 4378–4387
Vance C K, Bartholomew C H. Hydrogenation of carbon dioxide on group viii metals: III, Effects of support on activity/selectivity and adsorption properties of nickel. Applied Catalysis, 1983, 7(2): 169–177
Chang F W, Hsiao T J, Chung SW, Lo J J. Nickel supported on rice husk ash—activity and selectivity in CO2 methanation. Applied Catalysis A: General, 1997, 164(1–2): 225–236
Chang F W, Hsiao T J, Shih J D. Hydrogenation of CO2 over a rice husk ash supported nickel catalyst prepared by deposition-precipitation. Industrial & Engineering Chemistry Research, 1998, 37(10): 3838–3845
Chang F W, Tsay M T, Liang S P. Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange. Applied Catalysis A: General, 2001, 209(1–2): 217–227
Chang F W, Tsay M T, Kuo M S. Effect of thermal treatments on catalyst reducibility and activity in nickel supported on RHA-Al2O3 systems. Thermochimica Acta, 2002, 386(2): 161–172
Puxley D C, Kitchener I J, Komodromos C, Perkyns N D. In preparation of catalysts. Amsterdam: Elsevier, 1983, 237
Sane S, Bonnier JM, Damon J P, Masson J. Raney metal catalysts: I. comparative properties of raney nickel proceeding from Ni-Al intermetallic phases. Applied Catalysis, 1984, 9(1): 69–83
Lee G D, Moon M J, Park J H, Park S S, Hong S S. Raney Ni catalysts derived from different alloy precursors Part II. CO and CO2 methanation activity. Korean J Chem Eng, 2005, 22(4): 541–546
Sehested J, Larsen K E, Kustov A L, Frey A M, Johannessen T, Bligaard T, Andersson M P, Norskov J K, Christensen C H. Discovery of technical methanation catalysts based on computational screening. Topics in Catalysis, 2007, 45(1–4): 9–13
Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K. Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys. Catalysis Communications, 2006, 7(1): 24–28
Kaspar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 1999, 50(2): 285–298
Tsolakis A, Golunski S E. Sensitivity of process efficiency to reaction routes in exhaust-gas reforming of diesel fuel. Chemical Engineering Journal, 2006, 117(2): 131–136
Perkas N, Amirian G, Zhong Z Y, Teo J, Gofer Y, Gedanken A. Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides. Catalysis Letters, 2009, 130(3–4): 455–462
Ocampo F, Louis B, Roger A C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method. Applied Catalysis A: General, 2009, 369(1–2): 90–96
Song H L, Yang J, Zhao J, Chou L J. Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst. Chinese Journal of Catalysis, 2010, 31(1): 21–23
Guo F, Chu W, Xu H Y, Zhang T. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation. Chinese Journal of Catalysis, 2007, 28: 429–434
Kustov A L, Frey A M, Larsen K E, Johannessen T, Norskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A: General, 2007, 320: 98–104
Agnelli M, Kolb M, Mirodatos C. CO hydrogenation on a nickel catalyst: 1. Kinetics and modeling of a low-temperature sintering process. Journal of Catalysis, 1994, 148(1): 9–21
Kuśmierz M. Kinetic study on carbon dioxide hydrogenation over Ru/gamma-Al2O3 catalysts. Catalysis Today, 2008, 137(2–4): 429–432
Abe T, Tanizawa M, Watanabe K, Taguchi A. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci, 2009, 2(3): 315–321
Kowalczyk Z, Stolecki K, Rarńg-Pilecka W, Miśkiewicz E, Wilczkowska E, Karpińiski Z. Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios. Applied Catalysis A: General, 2008, 342(1–2): 35–39
Luo L, Li S, Zhu Y. The effects of yttrium on the hydrogenation performance and surface properties of a ruthenium-supported catalyst. J Serb Chem Soc, 2005, 70(12): 1419–1425
Yu K P, Yu W Y, Kuo M C, Liou Y C, Chien S H. Pt/titaniananotube: A potential catalyst for CO2 adsorption and hydrogenation. Applied Catalysis B: Environmental, 2008, 84(1–2): 112–118
Chen Y G, Tomishige K, Yokoyama K, Fujimoto K. Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Applied Catalysis A: General, 1997, 165(1–2): 335–347
Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part I. Effect of changes to the catalyst during reaction. Catalysis Reviews. Science and Engineering, 2006, 48(2): 91–144
Albers P, Pietsch J, Parker S F. Poisoning and deactivation of palladium catalysts. J Mol Catal A, 2001, 173(1–2): 275–286
Schuurman Y, Mirodatos C, Ferreira-Aparicio P, Rodríguez-Ramos I, Guerrero-Ruiz A. Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts. Catalysis Letters, 2000, 66(1/2): 33–37
Galuszka J. Carbon dioxide chemistry during oxidative coupling of methane on a Li/MgO catalyst. Catalysis Today, 1994, 21(2–3): 321–331
Park J N, McFarland E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. Journal of Catalysis, 2009, 266(1): 92–97
Szailer T, Novak E, Oszko A, Erdohelyi A. Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts. Topics in Catalysis, 2007, 46(1–2): 79–86
Vayenas C G, Bebelis S, Ladas S. Dependence of catalytic rates on catalyst work function. Nature, 1990, 343(6259): 625–627
Lintz H G, Vayenas C G. Solid ion conductors in heterogeneous catalysis. Angewandte Chemie International Edition in English, 1989, 28(6): 708–715
Vayenas C G, Bebelis S, Neophytides S, Yentekakis I V. Nonfaradaic electrochemical modification of catalytic activity in solid electrolyte cells. Applied Physics A, Materials Science & Processing, 1989, 49(1): 95–103
Vayenas C G, Koutsodontis C G. Non-Faradaic electrochemical activation of catalysis. The Journal of Chemical Physics, 2008, 128(18): 182506–182518
Bebelis S, Karasali H, Vayenas C G. Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes. Journal of Applied Electrochemistry, 2008, 38(8): 1127–1133
Papaioannou E I, Souentie S, Hammad A, Vayenas C G. Electrochemical promotion of the CO2 hydrogenation reaction using thin Rh, Pt and Cu films in a monolithic reactor at atmospheric pressure. Catalysis Today, 2009, 146(3–4): 336–344
Krämer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier WF. The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst. Applied Catalysis A: General, 2009, 369(1–2): 42–52
Falconer J L, Zagli A E. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. Journal of Catalysis, 1980, 62(2): 280–285
Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 1982, 77(2): 460–472
Marwood M, Doepper R, Renken A. In-situ surface and gas phase analysis for kinetic studies under transient conditions: The catalytic hydrogenation of CO2. Applied Catalysis A: General, 1997, 151(1): 223–246
Fujita S, Terunuma H, Kobayashi H, Takezawa N. Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state. React Kinet Catal Lett, 1987, 33(1): 179–184
Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity. Journal of Molecular Catalysis, 1990, 63(2): 243–254
Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals: IV. The kinetic behavior of CO hydrogenation over Ni catalysts. Journal of Catalysis, 1976, 44(1): 152–162
Huang C P, Richardson J T. Alkali promotion of nickel catalysts for carbon monoxide methanation. Journal of Catalysis, 1978, 51(1): 1–8
Araki M, Ponec V. Methanation of carbon monoxide on nickel and nickel-copper alloys. Journal of Catalysis, 1976, 44(3): 439–448
Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen J R. Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios. The Journal of Physical Chemistry B, 2005, 109(6): 2432–2438
Lapidus A L, Gaidai N A, Nekrasov N V, Tishkova L A, Agafonov Y A, Myshenkova T N. The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Petroleum Chemistry, 2007, 47(2): 75–82
Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nørskov J K. Theoretical studies of stability and reactivity of CHx species on Ni(111). Journal of Catalysis, 2000, 189(1): 16–30
Ackermann M, Robach O, Walker C, Quiros C, Isern H, Ferrer S. Hydrogenation of carbon monoxide on Ni(111) investigated with surface X-ray diffraction at atmospheric pressure. Surface Science, 2004, 557(1–3): 21–30
Choe S J, Kang H J, Kim S J, Park S B, Park D H, Huh D S. Adsorbed carbon formation and carbon hydrogenation for CO2 methanation on the Ni(111) surface: ASED-MO study. Bulletin of the Korean Chemical Society, 2005, 26(11): 1682–1688
Kim H Y, Lee H M, Park J N. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: independent roles of MgO and Pd on CO2 methanation. Journal of Physical Chemistry C, 2010, 114(15): 7128–7131
Blangenois N, Jacquemin M, Ruiz P. U S. Patent, WO2010006386, 2010-1-21