Metavalent bonding impacts charge carrier transport across grain boundaries

Tsinghua University Press - Tập 2 - Trang e9120057 - 2023
Yuan Yu1, Matthias Wuttig2
1Institute of Physics (IA),RWTH Aachen University Hospital, 30, 52074,
2Institute of Physics (IA),RWTH Aachen University Hospital, 30, 52074,Peter Grünberg Institute (PGI 10),GERMANY. Forschungszentrum Jülich, 52425,GERMANY.

Tóm tắt

Từ khóa


Tài liệu tham khảo

C. R. Robeson. The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium. 1969, 19: 887-898.

S. Sadewasser. Grain boundaries in Cu(In, Ga)Se: A review of compositionelectronic property relationships by atom probe tomography and correlative microscopy. 2021, 31: 2103119.

D. Vashaee. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. 2008, 320: 634-638.

G. X. Liang. Harvesting waste heat with flexible BiTe thermoelectric thin film

Z. G. Chen. Advances in the design and assembly of flexible thermoelectric device. 2023, 131: 101003.

Z. G. Chen. Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion. 2020, 13: 3480-3488.

E. S. Toberer. Complex thermoelectric materials. 2008, 7: 105-114.

Z. G. Chen. Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization. 2022, 151: 100700.

C. M. L. Wu. Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation–A critical review. 2022, 1: 9120034.

C. Scheu. Simultaneous optimization of electrical and thermal transport properties of BiSbTe thermoelectric alloy by twin boundary engineering. 2017, 37: 203-213.

Y. H. Lee. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. 2015, 348: 109-114.

Y. Liu. Achieving high power factor and output power density in p-type half-Heuslers NbTiFeSb. 2016, 113: 13576-13581.

Y. Miyazaki. Enhancement of average thermoelectric figure of merit by increasing the grain-size of MgSbBiTe. 2018, 112: 033903.

A. R. Warwick. The five-dimensional parameter space of grain boundaries. 2015, 471: 20150442.

G. J. Snyder. Grain boundary dominated charge transport in MgSb-based compounds. 2018, 11: 429-434.

G. J. Snyder. Grain boundary complexions enable a simultaneous optimization of electron and phonon transport leading to high-performance GeTe thermoelectric devices. 2023, 13: 2203361.

M. Wuttig. Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding. 2023, 14: 719.

O. Cojocaru-Mirédin. Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. 2020, 32: 260-274.

A. K. Pal. Grain boundary scattering in aluminium-doped ZnO films. 1991, 205: 64-68.

T. J. Zhu. Carrier grain boundary scattering in thermoelectric materials. 2022, 15: 1406-1422.

J. Y. W. Seto. The electrical properties of polycrystalline silicon films. 1975, 46: 5247-5254.

J. Y. Raty. Incipient metals: Functional materials with a unique bonding mechanism. 2018, 30: 1803777.

M. Wuttig. Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding. 2018, 30: 1706735.

C. N. R. Rao. Metavalent bonding origins of unusual properties of group IV chalcogenides

M. Wuttig. Chalcogenide thermoelectrics empowered by an unconventional bonding mechanism. 2020, 30: 1904862.

M. Wuttig. Chalcogenides by design: Functionality through metavalent bonding and confinement. 2020, 32: 1908302.

M. Wuttig. Understanding the structure and properties of sesqui-chalcogenides (i.e., VVI or PnCh (Pn = Pnictogen, Ch = Chalcogen) compounds) from a bonding perspective. 2019, 31: 1904316.

J. Y. Raty. Halide perovskites: Advanced photovoltaic materials empowered by a unique bonding mechanism. 2022, 32: 2110166.