Metatranscriptomics as a tool to identify fungal species and subspecies in mixed communities – a proof of concept under laboratory conditions

IMA Fungus - Tập 10 - Trang 1-10 - 2019
Edward C. Holmes1,2, Wieland Meyer1,3,4, Vanesa R. Marcelino1,3,2, John-Sebastian Eden1,3, Laszlo Irinyi1,3, Tania C. Sorrell1,3
1Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, Australia
2School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, Australia
3Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, Australia
4Westmead Hospital (Research and Education Network), Westmead, Australia

Tóm tắt

High-throughput sequencing (HTS) enables the generation of large amounts of genome sequence data at a reasonable cost. Organisms in mixed microbial communities can now be sequenced and identified in a culture-independent way, usually using amplicon sequencing of a DNA barcode. Bulk RNA-seq (metatranscriptomics) has several advantages over DNA-based amplicon sequencing: it is less susceptible to amplification biases, it captures only living organisms, and it enables a larger set of genes to be used for taxonomic identification. Using a model mock community comprising 17 fungal isolates, we evaluated whether metatranscriptomics can accurately identify fungal species and subspecies in mixed communities. Overall, 72.9% of the RNA transcripts were classified, from which the vast majority (99.5%) were correctly identified at the species level. Of the 15 species sequenced, 13 were retrieved and identified correctly. We also detected strain-level variation within the Cryptococcus species complexes: 99.3% of transcripts assigned to Cryptococcus were classified as one of the four strains used in the mock community. Laboratory contaminants and/or misclassifications were diverse, but represented only 0.44% of the transcripts. Hence, these results show that it is possible to obtain accurate species- and strain-level fungal identification from metatranscriptome data as long as taxa identified at low abundance are discarded to avoid false-positives derived from contamination or misclassifications. This study highlights both the advantages and current challenges in the application of metatranscriptomics in clinical mycology and ecological studies.

Tài liệu tham khảo

Balasundaram SV, Engh IB, Skrede I, Kauserud H (2015) How many DNA markers are needed to reveal cryptic fungal species? Fungal Biology 119(10):940–945. https://doi.org/10.1016/j.funbio.2015.07.006 Banchi E, Ametrano CG, Stankovic D, Verardo P, Moretti O, Gabrielli F, Lazzarin S, Borney MF, Tassan F, Tretiach M, Pallavicini A, Muggia L (2018) DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLoS One 13(3):e0194489. https://doi.org/10.1371/journal.pone.0194489 Bandara H, Panduwawala CP, Samaranayake LP (2019) Biodiversity of the human oral mycobiome in health and disease. Oral Diseases 25(2):363–371. https://doi.org/10.1111/odi.12899 Bashiardes S, Zilberman-Schapira G, Elinav E (2016) Use of metatranscriptomics in microbiome research. Bioinformatics and Biology Insights 10:19–25. https://doi.org/10.4137/BBI.S34610 Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Science Translational Medicine 4(165):165rv113. https://doi.org/10.1126/scitranslmed.3004404 Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nature Microbiology 2:16242. https://doi.org/10.1038/nmicrobiol.2016.242 Chen X, Fang H, Rao Z, Shen W, Zhuge B, Wang Z, Zhuge J (2008) An efficient genetic transformation method for glycerol producer Candida glycerinogenes. Microbiological Research 163(5):531–537. https://doi.org/10.1016/j.micres.2008.05.003 Clausen P, Aarestrup FM, Lund O (2018) Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 19(1):307. https://doi.org/10.1186/s12859-018-2336-6 Desnos-Ollivier M, Patel S, Raoux-Barbot D, Heitman J, Dromer F, French Cryptococcosis Study G (2015) Cryptococcosis serotypes impact outcome and provide evidence of Cryptococcus neoformans speciation. MBio 6(3):e00311. https://doi.org/10.1128/mBio.00311-15 Desnos-Ollivier M, Patel S, Spaulding AR, Charlier C, Garcia-Hermoso D, Nielsen K, Dromer F (2010) Mixed infections and In Vivo evolution in the human fungal pathogen Cryptococcus neoformans. MBio 1(1). https://doi.org/10.1128/mBio.00091-10 Dujon B (2010) Yeast evolutionary genomics. Nature Reviews. Genetics 11(7):512–524. https://doi.org/10.1038/nrg2811 Enaud R, Vandenborght LE, Coron N, Bazin T, Prevel R, Schaeverbeke T, Berger P, Fayon M, Lamireau T, Delhaes L (2018) The mycobiome: a neglected component in the microbiota-gut-brain axis. Microorganisms 6(1):22. https://doi.org/10.3390/microorganisms6010022 Federhen S (2012) The NCBI taxonomy database. Nucleic Acids Research 40(Database issue):D136–D143. https://doi.org/10.1093/nar/gkr1178 Feinstein LM, Sul WJ, Blackwood CB (2009) Assessment of bias associated with incomplete extraction of microbial DNA from soil. Applied and Environmental Microbiology 75(16):5428–5433. https://doi.org/10.1128/AEM.00120-09 Firacative C, Roe CC, Malik R, Ferreira-Paim K, Escandon P, Sykes JE, Castanon-Olivares LR, Contreras-Peres C, Samayoa B, Sorrell TC, Castaneda E, Lockhart SR, Engelthaler DM, Meyer W (2016) MLST and whole-genome-based population analysis of Cryptococcus gattii VGIII links clinical, veterinary and environmental strains, and reveals divergent serotype specific sub-populations and distant ancestors. PLoS Neglected Tropical Diseases 10(8):e0004861. https://doi.org/10.1371/journal.pntd.0004861 Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson KS, Knight R, Caporaso JG, Segata N, Huttenhower C (2018) Species-level functional profiling of metagenomes and metatranscriptomes. Nature Methods 15(11):962–968. https://doi.org/10.1038/s41592-018-0176-y Gonzalez E, Pitre FE, Page AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB (2018) Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. Microbiome 6(1):53. https://doi.org/10.1186/s40168-018-0432-5 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29(7):644–652. https://doi.org/10.1038/nbt.1883 Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T (2015) Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genetics and Biology 78:16–48. https://doi.org/10.1016/j.fgb.2015.02.009 Hannula SE, Morrien E, de Hollander M, van der Putten WH, van Veen JA, de Boer W (2017) Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME Journal 11(10):2294–2304. https://doi.org/10.1038/ismej.2017.90 Hawksworth DL, Lucking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum 5(4). https://doi.org/10.1128/microbiolspec.FUNK-0052-2016 Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends in Microbiology 21(7):334–341. https://doi.org/10.1016/j.tim.2013.04.002 Ji H, Zhuge B, Zong H, Lu X, Fang H, Zhuge J (2016) Role of CgHOG1 in stress responses and glycerol overproduction of Candida glycerinogenes. Current Microbiology 73(6):827–833. https://doi.org/10.1007/s00284-016-1132-7 Kassambara A (2017) Ggpubr:“ggplot2” based publication ready plots. R package version 0.1. 6 Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M (2016) No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proceedings of the National Academy of Sciences of the United States of America 113(18):5053–5058. https://doi.org/10.1073/pnas.1600338113 Kullman B, Tamm H, Kullman K (2005) Fungal Genome Size Database. http://www.zbi.ee/fungal-genomesize. Accessed Jan 2019 Kuske CR, Hesse CN, Challacombe JF, Cullen D, Herr JR, Mueller RC, Tsang A, Vilgalys R (2015) Prospects and challenges for fungal metatranscriptomics of complex communities. Fungal Ecology 14:133–137. https://doi.org/10.1016/j.funeco.2014.12.005 Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, Bicanic TA, Castaneda E, Chang YC, Chen J, Cogliati M, Dromer F, Ellis D, Filler SG, Fisher MC, Harrison TS, Holland SM, Kohno S, Kronstad JW, Lazera M, Levitz SM, Lionakis MS, May RC, Ngamskulrongroj P, Pappas PG, Perfect JR, Rickerts V, Sorrell TC, Walsh TJ, Williamson PR, Xu J, Zelazny AM, Casadevall A (2017) The case for adopting the "species complex" nomenclature for the etiologic agents of Cryptococcosis. mSphere 2(1). https://doi.org/10.1128/mSphere.00357-16 Kwon-Chung KJ, Boekhout T, Fell JW, Diaz M (2002) Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae). Taxon 51(4):804–806. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nature Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923 Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. doi:https://doi.org/10.1186/1471-2105-12-323 Li X, Shen X, Chen X, Xiang D, Murphy RW, Shen Y (2018) Detection of potential problematic Cytb gene sequences of fishes in GenBank. Frontiers in Genetics 9:30. doi:https://doi.org/10.3389/fgene.2018.00030 Liao HL, Chen Y, Bruns TD, Peay KG, Taylor JW, Branco S, Talbot JM, Vilgalys R (2014) Metatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with Piloderma-Pinus symbiosis: improved methodologies for assessing gene expression in situ. Environmental Microbiology 16(12):3730–3742. https://doi.org/10.1111/1462-2920.12619 Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, Fraser JA, Allen JE, Bosdet IE, Brent MR, Chiu R, Doering TL, Donlin MJ, D'Souza CA, Fox DS, Grinberg V, Fu J, Fukushima M, Haas BJ, Huang JC, Janbon G, Jones SJ, Koo HL, Krzywinski MI, Kwon-Chung JK, Lengeler KB, Maiti R, Marra MA, Marra RE, Mathewson CA, Mitchell TG, Pertea M, Riggs FR, Salzberg SL, Schein JE, Shvartsbeyn A, Shin H, Shumway M, Specht CA, Suh BB, Tenney A, Utterback TR, Wickes BL, Wortman JR, Wye NH, Kronstad JW, Lodge JK, Heitman J, Davis RW, Fraser CM, Hyman RW (2005) The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307(5713):1321–1324. https://doi.org/10.1126/science.1103773 Marcelino VR, Verbruggen H (2016) Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Scientific Reports 6:31508 https://doi.org/10.1038/srep31508 Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Applied and Environmental Microbiology 67(5):2354–2359. https://doi.org/10.1128/AEM.67.5.2354-2359.2001 McGuire KL, Payne SG, Palmer MI, Gillikin CM, Keefe D, Kim SJ, Gedallovich SM, Discenza J, Rangamannar R, Koshner JA, Massmann AL, Orazi G, Essene A, Leff JW, Fierer N (2013) Digging the new York City skyline: soil fungal communities in green roofs and city parks. PLoS One 8(3):e58020. https://doi.org/10.1371/journal.pone.0058020 Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, Fisher M, Gilgado F, Hagen F, Kaocharoen S, Litvintseva AP, Mitchell TG, Simwami SP, Trilles L, Viviani MA, Kwon-Chung J (2009) Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Medical Mycology 47(6):561–570. https://doi.org/10.1080/13693780902953886 Munoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP, Cuomo CA (2018) Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nature Communications 9(1):5346. https://doi.org/10.1038/s41467-018-07779-6 Ngamskulrungroj P, Gilgado F, Faganello J, Litvintseva AP, Leal AL, Tsui KM, Mitchell TG, Vainstein MH, Meyer W (2009) Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. PLoS One 4(6):e5862. https://doi.org/10.1371/journal.pone.0005862 Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Reviews. Microbiology 17(2):95–109. https://doi.org/10.1038/s41579-018-0116-y Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics 4:193–201. https://doi.org/10.4137/ebo.S653 Olm MR, West PT, Brooks B, Firek BA, Baker R, Morowitz MJ, Banfield JF (2019) Genome-resolved metagenomics of eukaryotic populations during early colonization of premature infants and in hospital rooms. Microbiome 7(1):26. https://doi.org/10.1186/s40168-019-0638-1 Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research 35(Database issue):D61–D65. https://doi.org/10.1093/nar/gkl842 Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nature Biotechnology 35(9):833–844. https://doi.org/10.1038/nbt.3935 Reck M, Tomasch J, Deng Z, Jarek M, Husemann P, Wagner-Dobler I, Consortium C (2015) Stool metatranscriptomics: a technical guideline for mRNA stabilisation and isolation. BMC Genomics 16:494. https://doi.org/10.1186/s12864-015-1694-y Rizzetto L, Giovannini G, Bromley M, Bowyer P, Romani L, Cavalieri D (2013) Strain dependent variation of immune responses to A. fumigatus: definition of pathogenic species. PLoS One 8(2):e56651. https://doi.org/10.1371/journal.pone.0056651 Robert V, Vu D, Amor AB, van de Wiele N, Brouwer C, Jabas B, Szoke S, Dridi A, Triki M, Ben Daoud S, Chouchen O, Vaas L, de Cock A, Stalpers JA, Stalpers D, Verkley GJ, Groenewald M, Dos Santos FB, Stegehuis G, Li W, Wu L, Zhang R, Ma J, Zhou M, Gorjon SP, Eurwilaichitr L, Ingsriswang S, Hansen K, Schoch C, Robbertse B, Irinyi L, Meyer W, Cardinali G, Hawksworth DL, Taylor JW, Crous PW (2013) MycoBank gearing up for new horizons. IMA Fungus 4(2):371–379. https://doi.org/10.5598/imafungus.2013.04.02.16 Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology 12:87. https://doi.org/10.1186/s12915-014-0087-z Schmidt P-A, Bálint M, Greshake B, Bandow C, Römbke J, Schmitt I (2013) Illumina metabarcoding of a soil fungal community. Soil Biology and Biochemistry 65:128–132. https://doi.org/10.1016/j.soilbio.2013.05.014 Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864. https://doi.org/10.1093/bioinformatics/btr026 Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jorgensen TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F, Balvociute M, Hansen LH, Sorensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu YW, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin HH, Liao YC, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk HP, Goker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC (2017) Critical assessment of metagenome interpretation-a benchmark of metagenomics software. Nature Methods 14(11):1063–1071. https://doi.org/10.1038/nmeth.4458 Seed PC (2014) The human mycobiome. Cold Spring Harbor Perspectives in Medicine 5(5):a019810. https://doi.org/10.1101/cshperspect.a019810 Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, Podar M (2013) Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. Environmental Microbiology 15(6):1882–1899. https://doi.org/10.1111/1462-2920.12086 Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC, Zhang YZ (2016) Redefining the invertebrate RNA virosphere. Nature 540(7634):539–543. https://doi.org/10.1038/nature20167 Shi M, Neville P, Nicholson J, Eden JS, Imrie A, Holmes EC (2017) High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated rna viruses in Western Australia. Journal of Virology 91(17):e00680–17. https://doi.org/10.1128/JVI.00680-17 Soll DR, Staebell M, Langtimm C, Pfaller M, Hicks J, Rao TV (1988) Multiple Candida strains in the course of a single systemic infection. Journal of Clinical Microbiology 26(8):1448–1459 Strong MJ, Xu G, Morici L, Splinter Bon-Durant S, Baddoo M, Lin Z, Fewell C, Taylor CM, Flemington EK (2014) Microbial contamination in next generation sequencing: implications for sequence-based analysis of clinical samples. PLoS Pathogens 10(11):e1004437. https://doi.org/10.1371/journal.ppat.1004437 Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43. https://doi.org/10.3897/mycokeys.10.4852 Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews. Genetics 10(1):57–63. https://doi.org/10.1038/nrg2484 Wang Z, Zhuge J, Fang H (1999) A new osmotolerant and glycerol-highly-producing species - Candida glycerolgenesis Zhuge sp. nov. Acta Microbiologica Sinica 39(1):68–74 Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC (2018) Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Molecular Ecology 27(24):5263–5278. https://doi.org/10.1111/mec.14918 Yahr R, Schoch CL, Dentinger BT (2016) Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Philosophical Transactions of the Royal Society B 371(1702): 20150336. https://doi.org/10.1098/rstb.2015.0336 Yamamoto N, Dannemiller KC, Bibby K, Peccia J (2014) Identification accuracy and diversity reproducibility associated with internal transcribed spacer-based fungal taxonomic library preparation. Environmental Microbiology 16(9):2764–2776. https://doi.org/10.1111/1462-2920.12338 Zhang YZ, Shi M, Holmes EC (2018) Using metagenomics to characterize an expanding virosphere. Cell 172(6):1168–1172. https://doi.org/10.1016/j.cell.2018.02.043