Metaproteomics: an emerging tool for the identification of proteins from extreme environments
Tóm tắt
Microbial communities from extreme environments, such as saline, arid, hot, cold, acidic, or alkaline are especially important because they have special genetic and physiological modifications to function properly under extreme environments. They possess extremozymes and other biomolecules that can be used in various industrial processes, e.g., pharmaceuticals, paper manufacturing, degradation of complex organic molecules, biofuel production and food industries. With the advent of new sequencing technologies and ‘omics’ approaches, such as metagenomics, metatranscriptomics and metaproteomics, new windows have been opened to study the microbial ecology and functional microbial communities from extreme environments. Recently, metaproteomic analysis has been extensively used to explore the functional microbial communities from various extreme environments around the globe. In this review, we have focused on the microbial diversity analysis, identification of novel proteins, and enzymes from extreme environments, through metaproteomic approaches.
Tài liệu tham khảo
Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123(2):132–137
Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791
Bao Z, Okubo T, Kubota K, Kasahara Y (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80:5043–5052
Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443
Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58
Bastida F, García C, von Bergen M, Moreno JL, Richnow HH, Jehmlich N (2015) Deforestation fosters bacterial diversity and the cyanobacterial community responsible for carbon fixation processes under semiarid climate: a metaproteomics study. Appl Soil Ecol 93:65–67
Bastida F, Hern´andez T, Garcıa C (2014) Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. J Proteom 101:31–42
Bastida F, Moreno JL, Nicolas C, Hernandez T, Garc IA (2009) Soil metaproteomics: a review of an emerging environmental science. Significance methodology and perspectives. Eur J Soil Sci 60:845–859
Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW (2013) Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J 7:1200–1210
Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Biores Technol 128:751–759
Borges N, Jorge CD, Gonçalves LG, Gonçalves S, Matias PM, Santos H (2014) Mannosyl-glycerate: structural analysis of biosynthesis and evolutionary history. Extremophiles 18:835–852
Boteva N, Kambourova M (2018) Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. Eight ed. Springer, Singapore
Boutaiba S, Hacène H, Bidle KA, Maupin-Furlow JA (2011) Microbial diversity of the hypersaline Sidi Ameur and Himalatt salt lakes of the Algerian Sahara. J Arid Environ 75:909–916
Bunge CR (2016) On the concept of a psychrophile. ISME J 10:793–795
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M et al (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569–586
Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866
Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Tre Plant Sci 13:499–505
Chiang AJ, Malli Mohan GB, Singh NK, Vaishampayan PA, Kalkum M, Venkateswaran K (2019) Alteration of proteomes in first-generation cultures of Bacillus pumilus spores exposed to outer space. mSystems 4(4):e00195–e00119
Chiapello M, Zampieri E, Mello A (2020) A small effort for researchers, a big gain for soil metaproteomics. Front Microbiol 11:88
Collins RE, Deming JW (2013) An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H. Extremophiles 17:601–610
Conrath U (2006) Systemic acquired resistance. Plant Signal Behav 1(4):179–184
Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102
Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JC, Jakob U (2015) HdeB functions as an acid-protective chaperone in bacteria. J Biol Chem 290(1):65–75 (published correction appears in J Biol Chem 290(16):9950)
DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126
Defez R, Esposito R, Angelini C, Bianco C (2016) Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids. Mol Plant Microbe Interact 29:484–495
Delgado-García M, Aguilar CN, Contreras-Esquivel JC, Rodríguez-Herrera R (2014) Screening for extracellular hydrolytic enzymes production by different halophilic bacteria. Mycopath 12(1):17–23
Denef VJ, VerBerkmoes NC, Shah MB, Abraham P, Lefsrud M, Hettich RL, Banfield JF (2009) Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. Environ Microbiol 11:313–325
Deocampo DM, Renaut RW (2016) Geochemistry of African soda lakes. In: Schagerl M (ed) Soda lakes of East Africa. Springer, Cham, pp 77–93
Dettmer A, dos Anjos PS, Gutterres M (2013) Special review paper: Enzymes in the leather industry. J Am Leather Chem As 108(4):146–158
Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ et al (2020) The Proteome exchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res 48:1145–1152
Everley RA, Mott TM, Wyatt SA, Toney DM, Croley TR (2008) Liquid chromatography/mass spectrometry characterization of Escherichia coli and Shigella species. J Am Soc Mass Spectrom 19:1621–1628
Ewing TA, Fraaije MW, van Berkel WJH (2015) Oxidation using alcohol oxidases. In: Faber K, Fessner W-D (eds) Biocatalysis in organic synthesis 3. Georg Thieme Verlag KG, Stuttgart, pp 157–186
Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422
Fernández AB, Vera-Gargallo B, Sánchez-Porro C, Ghai R, Papke RT, Rodriguez-Valera F, Ventosa A (2014) Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5:196
Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2(11):898–907
Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes: past, present and future. Environ Technol 31:845–856
Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390
Ghobakhlou AF, Johnston A, Harris L, Antoun H, Laberge S (2015) Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genom 16:383
Glick BR, Li J, Shah S, Penrose DM, Moffatt BA (1999) ACC deaminase is central to the functioning of plant growth promoting rhizobacteria. In: Biology and Biotechnology of the Plant Hormone Ethylene II (pp. 293–298)
Gupta G, Srivastava S, Khare SK, Prakash V (2014) Extremophiles: an overview of microorganisms from extreme environment. IJEAB 7(2):371–380
Han MJ, Park SJ, Park TJ, Lee SY (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol Bioengin 88:426–436
Hanson BT, Hewson I, Madsen EL (2014) Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling. Microb Ecol 67:520–539
Hensley SA, Jung JH, Park CS, Holden JF (2014) Thermococcus paralvinellae sp. nov. and Thermococcu scleftensis sp. nov. of hyperthermophilic heterotrophs from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 64:3655–3659
Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 3–15
Horikoshi K (2011) General physiology of alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 99–118
Horikoshi M, Nakajima S, Masahito U, Mukaiyama T (2011) Extremophiles Handbook bio-organisms K Japan Sci Technol Age Exploratory Research for Advanced Technology (ERATO). Mac Quan Con Proj 2:113–8656
Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1–2):3–14
Julca I, Alaminos M, González-López J, Manzanera M (2012) Xeroprotectants for the stabilization of biomaterials. Biotechnol Adv 30(6):1641–1654
Karan R, Capes MD, DasSarma (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:4–10
Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934–939
Keiblinger KM, Riedel K (2018) Sample preparation for metaproteome analyses of soil and leaf litter. Methods Mol Biol 1841:303–318
Keiblinger KM, Wilhartitz IC, Schneider T, Roschitzki B, Schmid E, Eberl L et al (2012) Soil metaproteomics—comparative evaluation of protein extraction protocols. Soil Biol Biochem 54:14–24
Kevbrin VV (2019) Isolation and cultivation of alkaliphiles. Adv Biochem Eng Biotechnol 2019:1–32
Khalikova E, Somersalo S, Korpela T (2019) Metabolites produced by alkaliphiles with potential biotechnological applications. Adv Biochem Eng Biotechnol 2019:1–37
Khalil A (2011) Screening and characterization of thermophilic bacteria (lipase, cellulase and amylase producers) from hot springs in Saudi Arabia. J Food Agric Environ 9(2):672–675
Kleiner M (2019) Metaproteomics: Much more than measuring gene expression in microbial communities. mSystems 4(3):e00115–e00119
Kosova K, Vitamvas P, Urban MO, Klima M, Roy A, Prasil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. Int J Mol Sci 16:20913–20942
Kulshreshtha NM, Kumar A, Bisht G, Pasha S, Kumar R (2012) Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater. Sci World J 2012:345101
Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JA, Andrews-Pfannkoch C, Lewis M, Hoffman JF, Thomas T, Cavicchioli R (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895
Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M (2015) Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 91:fiv011
Liszka M, Clark M, Schneider E, Clark DS (2012) Nature versus nurture: developing enzymes that function under extreme conditions. Ann Rev Chem Biomol Eng 3:77–102
Liu D, Li M, Xi B, Zhao Y, Wei Z, Song C, Zhu C (2015) Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant. Microbial Biotec 8:950–960
Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:240–247
López-López O, Cerdán ME, González-Siso MI (2013) Hot spring functional metagenomics. Life 3:308–320
Lüders S, Fallet C, Franco-Lara E (2009) Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Sci 7::36
Mamo G, Mattiasson B (2016) Alkaliphilic microorganisms in biotechnology. Biotechnology of extremophiles. Springer, Cham, pp 243–272
Manzanera M, de Castro AG, Tøndervik A, Rayner-Brandes M, Strøm AR, Tunnacliffe A (2002) Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440. Appl Environ Microbiol 68:328–4333
Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microb 6:805–814
Martinez X, Pozuelo M, Pascal V, Campos D, Gut I, Gut M et al (2016) MetaTrans: an open-source pipeline for metatranscriptomics. Sci Rep 6:26447
Mattarozzi M, Manfredi M, Montanini B, Gosetti F, Sanangelantoni AM, Marengo E et al (2017) A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 409:2327–2339
Mirete S, Morgante V, González-Pastor JE (2016) Functional metagenomics of extreme environments. Curr Opin Biotechnol 38:143–149
Mocali S, Benedetti A (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 161:497–505
Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C (2017) Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol 2017:6943952
Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167
Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G (2010) Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J 4:673–685
Mueller RS, Dill BD, Pan C, Belnap CP, Thomas BC, VerBerkmoes NC, Hettich RL, Banfield JF (2011) Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community. Environ Microbiol 13:2279–2292
Mukhtar S, Ahmad S, Bashir A, Mirza MS, Mehnaz S, Malik KA (2019c) Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes. Microbiol Res 228:126307
Mukhtar S, Laaldin N, Mehnaz S, Malik KA (2018c) Recent advances in soil metaproteomics from hypersaline environments. Proc Pak Acad Sci 55(4):19–28
Mukhtar S, Malik KA, Mehnaz S (2018a) Isolation and characterization of haloalkaliphilic bacteria isolated from the rhizosphere of Dichanthium annulatum. J Adv Res Biotech 3:1–9
Mukhtar S, Mehnaz S, Malik KA (2019a) Microbiome of halophyte: diversity and importance for plant health and productivity. Microbiol Biotech Lett 47(1):1–10
Mukhtar S, Mehnaz S, Malik KA (2019b) Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crops improvement. Environ Sustain. https://doi.org/10.1007/s42398-019-00061-5
Mukhtar S, Mehnaz S, Malik KA (2020) Osmoadaptation in halophilic bacteria and archaea. Res J Biotech 15(5):154–161
Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Kauser AM (2018b) Impact of soil salinity on the structure and composition of rhizosphere microbiome. World J Microbiol Biotech 34:136
Myka KK, Allcock DJ, Eloe-Fadrosh EA, Tryfona T, Haag AF, Lauro FM et al (2017) Adaptations of cold- and pressure-loving bacteria to the deep-sea environment: cell envelope and flagella. In: Chénard C, Lauro F et al (eds) Microbial ecology of extreme environments. Springer, Cham, pp 51–80
Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN et al (2005) Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335
Naghoni A, Emtiazi G, Amoozegar MA, Cretoiu MS, Stal LJ, Etemadifar Z et al (2017) Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci Rep 7:11522
Nicora CD, Anderson BJ, Calliste SJ, Norbeck AD (2013) Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics 13:2776–2785
Nunn BL, Slattery KV, Cameron KA, Timmins-Schiffman E, Junge K (2015) Proteomics of Colwellia psychrerythraea at subzero temperatures—A life with limited movement, flexible membranes and vital DNA repair. Environ Microbiol 17:2319–2335
Oren A (2002) Halophilic microorganisms and their environments. Kluver Academic Publishers, London
Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Tech 31:825–834
Osman JR, Regeard C, Badel C, Fernandes G, DuBow MS (2019) Variation of bacterial biodiversity from saline soils and estuary sediments present near the Mediterranean Sea coast of Camargue (France). Anton Leeuw Int J G 112(3):351–365
Overland J, Dunlea E, Box JE, Corell R, Forsius M, Kattsov V, Wang M (2019) The urgency of Arctic change. Polar Sci 21:6–13
Paul D, Kumbhare SV, Mhatre SS, Chowdhury SP, Shetty SA, Marathe NP, Bhute S, Shouche YS (2016) Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite Crater Lake within basalt rock. Front Microbiol 6:1553
Pieper R, Huang ST, Suh MJ (2014) Proteomics and metaproteomics. Encycl Metagen 8:1–11
Piette F, Leprince P, Feller G (2012) Is there a cold shock response in the Antarctic psychrophile Pseudoalteromonas haloplanktis? Extremophiles 16:681–683
Pinar G, Kraková L, Pangallo D, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2014) Halophilic bacteria are colonizing the exhibition areas of the Capuchin Catacombs in Palermo Italy. Extremophiles 18(4):677–691
Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotech 3:75
Qi J, Xu M, An C, Wu M, Zhang Y, Li X, Zhang Q, Lu G (2017) Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Phys Earth Planet Inter 263:12–22
Qin Y, Huang Z, Liu Z (2014) A novel cold-active and salt-tolerant alpha-amylase from marine bacterium Zunongwangia profunda: Molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18:271–281
Richard H, Foster JW (2004) Escherichia coli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186(18):6032–6041
Roca A, Pizarro-Tobías P, Udaondo Z, Fernández M, Matilla MA, Molina‐Henares MA, Ramos JL (2013) Analysis of the plant growth‐promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD‐1. Enviro Microbiol 15(3):780–794
Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million years old permafrost: a genome and transcriptome approach. BMC Genom 9:547
Sarwar MK, Azam I, Iqbal T (2015) Biology and applications of halophilic bacteria and archaea: A. eJBio 11(3):98–103
Schneider T, Keiblinger KM, Schmid E, Gleixner SK (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762
Schneider T, Schmid E, de Castro JV, Cardinale M, Eberl L, Grube M et al (2007) Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol 73:3343–3347
Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457
Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ et al (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351
Shi W, Takano T, Liu S (2012) Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World J Microbiol Biotechnol 28(5):2147–2157
Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526
Singh G, Bhalla A, Kaur P, Capalash N, Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev Environ Sci 10(4):309–326
Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL (1994) Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176(6):1729–1737
Spanò A, Gugliandolo C, Lentinia V, Maugeri TL, Anzelmo G, Poli A, Nicolaus B (2013) A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr Microbiol 67:21–29
Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH (2012) Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol 14:1333–1346
Sukul P, Lupilov N, Leichert LI (2018) Characterization of ML-005, a novel Metaproteomics derived Esterase. Front Microbiol 9:1925
Sussulini A, Becker JS (2011) Combination of PAGE and LA-ICP-MS as an analytical workflow in metallomics: state of the art, new quantification strategies, advantages and limitations. Metallomics 3:1271–1279
Sánchez-Porro C, Tokunaga H, Tokunaga M, Ventosa A (2007) Chromohalobacter japonicus sp. nov., a moderately halophilic bacterium isolated from a Japanese salty food. Int J Syst Evol Microbiol 57:2262–2266
Talwar C, Nagar S, Kumar R, Scaria J, Lal R, Negi RK (2020) Defining the environmental adaptations of genus Devosia: insights into its expansive short peptide transport system and positively selected genes. Sci Rep 10(1):1151
Tang Y, Underwood A, Gielbert A, Woodward MJ, Petrovska L (2014) Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 80(2):478–485
Thompson SA, Blaser MJ (1995) Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect Immun 63(6):2185–2193
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G (2016) Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline Soda Lake Brines. Front Microbiol 7:211
Vilanova C, Porcar M (2016) Are multi-omics enough? Nat Microbiol 1(8):16101
Wang Y, Zhou Y, Xiao X, Zheng J, Zhou H (2020) Metaproteomics: a strategy to study the taxonomy and functionality of the gut microbiota. J Proteom 219:103737
Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM, Raftery MJ et al (2012) A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J 6:1883–1900
Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920
Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15(20):3409–3417
Xie J, He Z, Liu X, Liu X, van Nostrand JD, Deng Y, Wu L, Zhou J, Qiu G (2011) Geochip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Appl Environ Microbiol 77:991–999
Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466
Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4
Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209
Zhang X, Niu J, Liang Y, Liu X, Yin H (2016) Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet 17:21