Metaphor-based metaheuristics, a call for action: the elephant in the room
Tóm tắt
Từ khóa
Tài liệu tham khảo
ACM Transactions on Evolutionary Learning and Optimization. Guidelines for Authors. https://dl.acm.org/journal/telo/author-guidelines (2021). Version visited last on March 26, 2021
Camacho Villalón, C.L., Dorigo, M., & Stützle, T. (2018). Why the intelligent water drops cannot be considered as a novel algorithm. In: M. Dorigo, M. Birattari, C. Blum, A.L. Christensen, A. Reina, V. Trianni (eds.) Swarm Intelligence, 11th International Conference, ANTS 2018, Lecture Notes in Computer Science, vol. 11172, (pp. 302–314). Springer.
Camacho Villalón, C. L., Dorigo, M., & Stützle, T. (2019). The intelligent water drops algorithm: why it cannot be considered a novel algorithm. Swarm Intelligence, 13(3–4), 173–192.
Camacho Villalón, C. L., Stützle, T., & Dorigo, M. (2020). Grey wolf, firefly and bat algorithms: Three widespread algorithms that do not contain any novelty. In: International Conference on Swarm Intelligence, (pp. 121–133). Springer (2020)
Camacho Villalón, C. L., Stützle, T., & Dorigo, M (2021). Cuckoo search $$\equiv $$ ($$\mu +\lambda $$)–evolution strategy — A rigorous analysis of an algorithm that has been misleading the research community for more than 10 years and nobody seems to have noticed. Technical Report TR/IRIDIA/2021-006, IRIDIA, Université Libre de Bruxelles, Belgium.
Campelo, F., & Aranha, C. (2021). Evolutionary computation bestiary. https://github.com/fcampelo/EC-Bestiary (2021). Version visited last on 26 March.
Dorigo, M. (2016). Swarm intelligence: A few things you need to know if you want to publish in this journal. https://www.springer.com/cda/content/document/cda_downloaddocument/Additional_submission_instructions.pdf (2016). Uploaded in November 2016
Fong, S., Wang, X., Xu, Q., Wong, R., Fiaidhi, J., & Mohammed, S. (2016). Recent advances in metaheuristic algorithms: Does the makara dragon exist? The Journal of Supercomputing, 72(10), 3764–3786.
García-Martínez, C., Gutiérrez, P. D., Molina, D., Lozano, M., & Herrera, F. (2017). Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis weakness. Soft Computing, 21(19), 5573–5583.
Journal of Heuristics. Policies on Heuristic Search Research. https://www.springer.com/journal/10732/updates/17199246 (2015). Version visited last on March 26, 2021.
Melvin, G., Dodd, T. J., & Groß, R. (2012). Why GSA: a gravitational search algorithm is not genuinely based on the law of gravity. Natural Computing, 11(4), 719–720.
Lones, M. A. (2020). Mitigating metaphors: A comprehensible guide to recent nature-inspired algorithms. SN Computer Science, 1(1), 1–12.
Piotrowski, A. P., Napiorkowski, J. J., & Rowinski, P. M. (2014). How novel is the novel black hole optimization approach? Information Sciences, 267, 191–200.
Simon, D., Rarick, R., Ergezer, M., & Du, D. (2011). Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms. Information Sciences, 181(7), 1224–1248.
Sörensen, K. (2015). Metaheuristics–the metaphor exposed. International Transactions in Operational Research, 22(1), 3–18.
Sörensen, K. Sevaux, M., & Glover, F. (2017). A history of metaheuristics. arXiv preprint arXiv:1704.00853.
Sörensen, K., Arnold, F., & Palhazi Cuervo, D. (2019). A critical analysis of the improved Clarke and Wright savings algorithm. International Transactions in Operational Research, 26(1), 54–63.
Swan, J., Adriaensen, S., Bishr, M., & Burke, et al. (2015). A research agenda for metaheuristic standardization. In: Proceedings of the XI Metaheuristics International Conference, pp. 1-3.
Tzanetos, A., & Dounias, G. (2020). Nature inspired optimization algorithms or simply variations of metaheuristics? Artificial Intelligence Review,1–22,
Weyland, D. (2010). A rigorous analysis of the harmony search algorithm: How the research community can be misled by a novel methodology. International Journal of Applied Metaheuristic Computing, 12(2), 50–60.