Metaphor-based metaheuristics, a call for action: the elephant in the room

Claus Aranha1, Christian Leonardo Camacho-Villalón2, Felipe Campelo3, Marco Dorigo2, Rubén Ruíz4, Marc Sevaux5, Kenneth Sörensen6, Thomas Stützle2
1University of Tsukuba, Tsukuba, Japan
2Université Libre de Bruxelles, Bruxelles, Belgium
3Aston University, Birmingham, UK
4Universitat Politècnica de València, València, Spain
5Université Bretagne Sud, Lorient, France
6University of Antwerp, Antwerp, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

ACM Transactions on Evolutionary Learning and Optimization. Guidelines for Authors. https://dl.acm.org/journal/telo/author-guidelines (2021). Version visited last on March 26, 2021

Camacho Villalón, C.L., Dorigo, M., & Stützle, T. (2018). Why the intelligent water drops cannot be considered as a novel algorithm. In: M. Dorigo, M. Birattari, C. Blum, A.L. Christensen, A. Reina, V. Trianni (eds.) Swarm Intelligence, 11th International Conference, ANTS 2018, Lecture Notes in Computer Science, vol. 11172, (pp. 302–314). Springer.

Camacho Villalón, C. L., Dorigo, M., & Stützle, T. (2019). The intelligent water drops algorithm: why it cannot be considered a novel algorithm. Swarm Intelligence, 13(3–4), 173–192.

Camacho Villalón, C. L., Stützle, T., & Dorigo, M. (2020). Grey wolf, firefly and bat algorithms: Three widespread algorithms that do not contain any novelty. In: International Conference on Swarm Intelligence, (pp. 121–133). Springer (2020)

Camacho Villalón, C. L., Stützle, T., & Dorigo, M (2021). Cuckoo search $$\equiv $$ ($$\mu +\lambda $$)–evolution strategy — A rigorous analysis of an algorithm that has been misleading the research community for more than 10 years and nobody seems to have noticed. Technical Report TR/IRIDIA/2021-006, IRIDIA, Université Libre de Bruxelles, Belgium.

Campelo, F., & Aranha, C. (2021). Evolutionary computation bestiary. https://github.com/fcampelo/EC-Bestiary (2021). Version visited last on 26 March.

Dorigo, M. (2016). Swarm intelligence: A few things you need to know if you want to publish in this journal. https://www.springer.com/cda/content/document/cda_downloaddocument/Additional_submission_instructions.pdf (2016). Uploaded in November 2016

Fong, S., Wang, X., Xu, Q., Wong, R., Fiaidhi, J., & Mohammed, S. (2016). Recent advances in metaheuristic algorithms: Does the makara dragon exist? The Journal of Supercomputing, 72(10), 3764–3786.

García-Martínez, C., Gutiérrez, P. D., Molina, D., Lozano, M., & Herrera, F. (2017). Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis weakness. Soft Computing, 21(19), 5573–5583.

Journal of Heuristics. Policies on Heuristic Search Research. https://www.springer.com/journal/10732/updates/17199246 (2015). Version visited last on March 26, 2021.

Melvin, G., Dodd, T. J., & Groß, R. (2012). Why GSA: a gravitational search algorithm is not genuinely based on the law of gravity. Natural Computing, 11(4), 719–720.

Lones, M. A. (2020). Mitigating metaphors: A comprehensible guide to recent nature-inspired algorithms. SN Computer Science, 1(1), 1–12.

Piotrowski, A. P., Napiorkowski, J. J., & Rowinski, P. M. (2014). How novel is the novel black hole optimization approach? Information Sciences, 267, 191–200.

Simon, D., Rarick, R., Ergezer, M., & Du, D. (2011). Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms. Information Sciences, 181(7), 1224–1248.

Sörensen, K. (2015). Metaheuristics–the metaphor exposed. International Transactions in Operational Research, 22(1), 3–18.

Sörensen, K. Sevaux, M., & Glover, F. (2017). A history of metaheuristics. arXiv preprint arXiv:1704.00853.

Sörensen, K., Arnold, F., & Palhazi Cuervo, D. (2019). A critical analysis of the improved Clarke and Wright savings algorithm. International Transactions in Operational Research, 26(1), 54–63.

Swan, J., Adriaensen, S., Bishr, M., & Burke, et al. (2015). A research agenda for metaheuristic standardization. In: Proceedings of the XI Metaheuristics International Conference, pp. 1-3.

Tzanetos, A., & Dounias, G. (2020). Nature inspired optimization algorithms or simply variations of metaheuristics? Artificial Intelligence Review,1–22,

Weyland, D. (2010). A rigorous analysis of the harmony search algorithm: How the research community can be misled by a novel methodology. International Journal of Applied Metaheuristic Computing, 12(2), 50–60.

Weyland, D. (2015). A critical analysis of the harmony search algorithm: How not to solve Sudoku. Operations Research Perspectives, 2, 97–105.